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Abstract. The ultrashort, ultrahigh intensity pulse laser has been fully developed in past three
decades. Chirped pulse amplification (CPA) system plays an important role in the generation of
the ultrashort, ultrahigh intensity pulse laser. Pulse compression gratings (PCGs) are the key
element of CPA system and determine the performance and lifetime of the whole system.
We introduce the principle of CPA system and the performance requirements of PCGs.
Then the development status of PCGs, including Au-coated grating, multilayer dielectric grating
(MDG), and metal MDG, is fully reviewed. Finally, the development prospect of PCGs in the
future is presented. Our study is helpful for comprehensive understanding of PCGs. © 2021
Society of Photo-Optical Instrumentation Engineers (SPIE) [DOI: 10.1117/1.OE.60.2.020902]
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1 Introduction

The ultrashort, ultrahigh intensity pulse laser has attracted tremendous attentions in past three
decades attributed to the specific phenomenon generated in interaction between ultrashort, ultra-
high intensity pulse laser and matter, as well as various applications.1–8 Significant efforts have
been made to generate higher peak intensity, and gratifying results have been achieved.9–32

The chirped pulse amplification (CPA) system33,34 plays an important role in the generation
of the ultrashort, ultrahigh intensity pulse laser.11–14 Pulse compression grating (PCG) is the
most critical element in CPA system, which determines the performance and lifetime of the
whole laser system. Due to the ultrahigh intensity, the PCGs require some strict performance,
such as high diffraction efficiency (DE), broad bandwidth, and high laser-induced damage
threshold (LIDT).35–37

Up to now, there are three main kinds of PCGs fully developed.35,36 Metal grating, usually
Au-coated grating (ACG), is the original kind of PCGs used in CPA system. ACG shows high
DE in a broad bandwidth. However, due to the high absorption of metal, its low LIDT limits the
further applications. To advance the LIDT, multilayer dielectric grating (MDG) is developed.
It is absolutely made of dielectric material, which barely absorbs the energy and shows
satisfactory LIDT. MDG is the dominant PCG in CPA of picosecond laser. Its fatal restriction
is the narrow bandwidth, which cannot satisfy the requirement of femtosecond laser. The
hybrid grating, metal multilayer dielectric grating (MMDG), provides a promising scheme
that can supply both broad bandwidth and high LIDT. Its manufacture technology is under
deep investigation.

ACG, MDG, and MMDG are the main stream PCGs attributed to their excellent optical
performance and easy achievement. However, there are some other designs used as PCGs, such
as transmission gratings,38–44 synthetic aperture gratings,45–52 photonic crystal gratings,53–55
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guided mode resonant gratings,56–58 total internal reflection gratings,59–61 volume gratings,62–64

connecting-layer gratings,65–67 metal mirror-based gratings,68 metal-dielectric gratings,69–71 two-
layer gratings,72–76 and three-layer gratings.77 Resulting from the scarce applications, we do not
pay particular attentions to these gratings.

In this paper, we provide the review of the PCGs, especially the significant progress over the
past five years. Our focus is on the basic principles of CPA, performance requirements of PCGs
and the research progress on three different kinds of PCGs. Finally, we give the development
prospect of PCGs in the future.

2 PCGs for CPA

2.1 CPA System

The peak intensity of pulse laser was seriously restrained over a long time until the CPA tech-
nique was proposed in 1985.23 The CPA system is a significant breakthrough for high-intensity
laser technique and makes it possible to generate much higher intensity laser. By far, the peak
intensity has been improved by 10 orders of magnitude. Strickland and Mourou, who have pro-
posed the CPA technique, were awarded the 2018 Nobel Prize in Physics for the contribution to
ultrahigh intensity laser.78

The working principle of CPA system is shown in Fig. 1.79 Its workflow can be decomposed
as follows. (i) Pulse stretching: the low-energy, ultrashort pulse generating from oscillator is
dispersed to long pulse by pulse stretcher. Its duration is generally between 100 ps and 3 ns,
and the peak intensity is reduced by several orders of magnitude after stretching. (ii) Pulse ampli-
fication: the stretched long pulse is amplified for 10 to 100 times by laser amplifier, and it carries
sufficient energy. (iii) Pulse compression: the amplified long pulse with high energy is recom-
pressed as ultrashort pulse with the same duration to the origin pulse, consequently it shows
ultrahigh peak intensity and short pulse. With the help of CPA system, the laser with petawatt
level energy in picosecond can be achieved. The process assures the generation of the ultrahigh
intensity laser; meanwhile, it successfully avoids the non-linear effect and element damage,
which maybe aroused by high intensity.

2.2 PCGs

The critical element of CPA system is the PCG that stretches and compresses the pulse.
The PCGs work in the high-intensity environment, and their performance directly determines
the efficiency and lifetime of the laser system. The special work environment needs the PCGs

Fig. 1 Schematic of operating principle for CPA. Its workflow can be decomposed to three steps:
(i) pulse stretching, (ii) pulse amplification, and (iii) pulse compression.79
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to show the following performance. (i) High DE: the DE is an important evaluation indicator
for PCGs. As shown in Fig. 1, among the process of stretching–amplification–compression,
the pulse will diffract through the PCGs four times. Regardless of the scattering and absorp-
tion, the efficiency of the system is biquadrate of DE of PCG. For instance, the DE of PCG is
90%, the final efficiency is 65.6%. Although the DE of PCG is improved to 96%, the
final efficiency can reach 85%. Consequently, improving the DE of PCG is significant to
advance the conversion efficiency of the laser generation system. (ii) High LIDT: the PCG
should tolerate the damage of the ultrahigh peak intensity laser, i.e., the high LIDT, which
is the essential requirement for normal work. (iii) Broad bandwidth: as the decrease of the
pulse duration, its bandwidth becomes much broader, which leads to the need for broader
bandwidth of PCG. The PCG must provide high DE in sufficient bandwidth to ensure the
integrality of pulse.

3 Mathematical Background for PCGs

The theoretical technique for analyzing the diffraction of electromagnetic waves through a gra-
ting is the basic tool to predict the diffraction behavior. In the earlier stage, the coupled-wave
approach and the modal approach are commonly used. These two methods have been evidenced
to be equivalent. However, they are difficult and time-consuming to achieve accurate calcula-
tions. The coupled-wave approach works well under several assumptions. To solve these prob-
lems, Moharam and Gaylord80 proposed the rigorous coupled-wave analysis (RCWA) to analyze
the diffraction behavior of planar gratings. Then the RCWAwas further promoted to the reflec-
tion gratings,81 arbitrary-thickness dielectric reflection gratings,82 dielectric surface-relief
gratings,83 planar absorption gratings,84 metallic surface-relief gratings,85 and binary gratings.86

Afterward, Li87 generalized the modal method for lamellar gratings. Furthermore, the modal
method was developed to multilayer modal method for arbitrary grating profile.88 The sub-
sequent works are almost referring to these two methods.

4 Progress on PCGs

The PCGs have been developed for three decades, and three kinds of PCGs have been suffi-
ciently studied. In this part, we review the PCGs in terms of structure, performance, and
fabrication in detail.

4.1 Structures of PCGs

4.1.1 Metal gratings

The pioneer PCG is metal grating, which is usually fabricated as ACG. Its fabrication is typical
holographic technique, which has been well developed for several decades. The grating struc-
tures are produced by the intersection of two coherent beams in a photoresponsive material.89–93

It can be decomposed into four steps, as shown in Fig. 2(a):94 (i) deposition of a uniform layer of
photoresist on a flat glass substrate; (ii) holographic exposure of a standing-wave interference
pattern on the photoresist layer, as shown in Fig. 2(b);36 (iii) elution of the exposed photoresist;
and (iv) deposition of a thin gold film on the structure.

4.1.2 Multilayer dielectric gratings

To improve the low LIDT, MDGs were proposed to replace ACGs. Its structural diagram is
shown in Fig. 3. It is consisted of pairs of dielectric material layers with alternating high and
low refractive indices. The DE of MDG can be improved to nearly 100%, and the LIDT can also
be improved attributed to the low absorption of dielectric materials, which has been widely
evidenced.95–104 Its performance can be optimized through adjusting the parameters of residual
layer thickness, groove depth, and the material of the surface relief.
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4.1.3 Metal multilayer dielectric gratings

The key difference between MDG and MMDG is that one metal layer is inserted between the
substrate and the dielectric materials in MMDG. Its structural diagram is shown in Fig. 4.
It shows good LIDT and DE as that of MDG. However, the DE bandwidth can be effectively

Fig. 3 Structural diagram of MDG. It was consisted of several pairs of alternating high and low
dielectric films. And the groove was etched on the top layer. h is the groove depth. t r is residual
layer thickness. Λ is the grating period. f is the duty cycle. The dark and light color layers rep-
resented materials of high and low refractive indices, respectively.

Fig. 2 The fabrication process of the ACG: (a) the four steps of ACG fabrication94 and (b) the
schematic of holographic grating.36
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broadened. Meanwhile, the metal layer replaces some pairs of dielectric layers, which releases
the stress between the whole stack and improves the stability of the structure.

4.2 Optical Performances of PCGs

The optical performances, such as DE, bandwidth, and central wavelength, are directly deter-
mined by the structures. The PCGs should be theoretically designed and optimized first, which is
the foundation of fabrication process. In this section, we review the design progress for
the PCGs.

4.2.1 Metal gratings

The ACG can show good DE in a broad bandwidth (close to 300 nm), and the ACG is still
desired element used as femtosecond compressors for high-intensity laser.105–108 However, due
to the intrinsic intense absorption property of metal, its utilization is seriously restrained by its
low LIDT. Therefore, the further research focuses on the improvement of LIDT. In 1995, Boyd
et al.109 systematically investigated the design, fabrication, and LIDT of ACG. The fabricated
ACG exhibited DE in excess of 95%. They concluded that the DE of ACG prepared by e-beam
evaporated coatings was higher than that of sputtering evaporation. They developed a simple
theory to study the relationship between gold thickness and LIDT and systematically investi-
gated the laser damage behavior for different pulses. Figure 5 shows that the theoretical and
measured LIDT for 1053-nm pulse laser incident on a gold film. For long pulses, there was
an approximately linear dependence on film thickness to 200 nm. For short pulses, similar
to that of long pulses, there was also a linear dependence on film thickness, but only to a thick-
ness near the penetration depth. Beyond this thickness, LIDTwas predicted to be independent of
film thickness. The LIDT of gratings was always lower than that of uniform metal films, which
did not agree with the expectation that the ACGs had close LIDT to gold films. The phenomenon
maybe aroused by the field enhancement or the plasma formation.

In 1996, Stuart et al. investigated the LIDT of ACGs at 1053 and 526 nm for pulse durations
ranging from 140 fs to 1 ns. It is found that the LIDTwas limited to 0.6 J∕cm2 for the subpico-
second pulses at 1053 nm. Figure 6 shows that the damage resulted from extremely rapid abla-
tion and vaporization for very short pulses (0.6 ps), and melting, flow, and resolidification for
long pulses (900 ps). The heat conduction model was utilized to predict the dependence of LIDT
on coating thickness and laser pulse duration. Figure 7(a) shows the theoretical and measured
LIDT for gold films of various thicknesses at 1053 nm. It was found that there was a linear
dependence on film thickness up to 200 nm for long pulse (800 ps) and linear dependence
on film thickness below the penetration depth. Beyond the penetration depth, the LIDT was

Fig. 4 Structural diagram of MMDG. It was consisted of one layer of metal and several pairs of
alternating high and low dielectric films. And the groove was etched on the top layer. h was the
groove depth. t r was the residual layer thickness. Λ was the grating period. f was the duty cycle.
The dark and light color layers represented materials of high and low refractive indices,
respectively.
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Fig. 6 Damage to gold films with 1053 nm pulses: (a) long pulse, 900 ps and (b) short pulse,
0.6 ps.110

Fig. 7 Theoretical and measured LIDT for 1053 nm. (a) LIDT for gold films with different thick-
nesses. Circles were long pulse (800 ps); triangles were short pulse (600 fs); and curves were the
theoretical results. (b) Pulse duration dependence of LIDT of a gold grating and a gold mirror.110

Fig. 5 Theoretical and measured LIDT for short pulse (600 fs) and long pulse (800 ps) of 1053 nm
laser. The solid curve and the dashed curve represented the theoretical LIDT of long pulse and
short pulse for a flat surface, respectively. The filled symbols showed the measured values for
gold films deposited on photoresist, and the open symbols showed the measured values for
gold-coated gratings. Circles were long pulse, and triangles were short pulse.109
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independent of film thickness. The τ1∕2 dependence of the LIDT on pulse duration τ was
observed down to 200 ps, whereas the LIDT was nearly independent of pulse duration below
1 ns, as shown in Fig. 7(b). The theoretical model can be well quantitative agreement with pulse
duration and wavelength of experimental results.110

Britten et al. developed a holographically produced ACG. It exhibited high LIDT and 800 to
1100 nm wavelength range for DE > 91%. Maximum DE > 93% was measured for TM polari-
zation at 1053 nm. Figure 8 shows the DE over the whole grating with size of 40 cm × 40 cm.
The DE was extremely uniform and >94% over the central 90% area. The LIDT was
420 mJ∕cm2 for pulse durations from 100 ps to 200 fs at 1053 nm. Its broad bandwidth testified
the potential in stretching and compression of extremely short pulses (10 fs). However, it cannot
compare with MDGs in terms of DE or LIDT.111

4.2.2 Multilayer dielectric gratings

Dielectric materials barely absorb any energy, so it inherently shows good LIDT. The main focus
is the improvement of bandwidth with high DE through optimizing the structure parameters.

In 1995, Perry et al. reported an MDG, consisted of alternating layers of ZnS (nH ¼ 2.35) and
ThF4 (nL ¼ 1.52), and the surface relief was etched on ZnS. The DE of MDG was related to
wavelength and polarization of incident light, the shape, and depth of the grooves. The calcu-
lations predicted that the peak DE for TE polarization was expected to 98%, whereas it was
<50% for TM polarization. The DE was highly sensitive to the polarization of the incident light,
which was widely confirmed in later works. The holographical fabricated MDG showed DE of
96% at 1053 nm in the first order for TE polarization, as shown in Fig. 9. The experimental
results were in good agreement with the calculation results.112 Li et al. pointed out that multilayer
dielectric (MLD) stack showed high reflectivity, low absorption, and high LIDT. The theoretical
results indicated that the peak DE was nearly to 100%. They directly deposited nine layers,
ðHLÞ4H, of ZnS∕Na3AlF6 on the etched photoresist gratings. The test results showed that the
DE was 70% and 84% corresponding to incidence from air and substrate, respectively. They
inferred that the discrepancy between the theory and the experiment resulted from the non-
conformally coated gratings, which was unavoidable for directly deposited grating on photo-
resist. The key for further improving DE was improving the conformability of the coated dielec-
tric layers. Finally, they pointed out that three considerations answered for the situation all
dielectric gratings have not been developed. (i) The coated multilayer gratings were not suitable

Fig. 8 Scanning photometry map of the first-order DE of a 40 cm × 40 cm 1480 l∕mm grating.
The measurements were made near Littrow angle with 1047-nm TM polarization. The average
DE was 94.5%, neglecting the upper and lower 5 cm of the grating.111
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for spectroscopic applications due to the existence of a large number of diffraction anomalies.
(ii) There were no tools for designing coated multilayer gratings. (iii) It was difficult to deposit
conformable thin film coatings.113 In 1996, Britten et al. first proposed that alternating quarter-
wave layers of HfO2 and half-wave layers of SiO2 (HLL) can be utilized to fabricate MLD
mirror, and the surface relief can be etched into the top layer eitherHfO2 or SiO2. The calculation
predicted that obtaining the same DE, the theoretical groove depth of SiO2 was deeper 300 nm
than that of HfO2, which was in good agreement with the experiments, as shown in Fig. 10.
Figure 10(a) shows the MDG etched on HfO2 top layer. Its DE was 95% for TE polarization
at 1053 nm, which was lower than the designed 99%. This may be attributed to the thinner
thickness than the designed 294 nm. The LIDT was 0.21 J∕cm2 at 1053 nm for 300 fs pulse.
The LIDT was disappointing and lower than the gold-overcoated photoresist gratings. They
claimed that it may be influenced by the preferential loss of oxygen in the etching process,
resulting in reduced LIDT. Figure 10(b) shows the MDG etched on SiO2 top layer with DE
of 94%. The LIDT was 0.51 J∕cm2, which was about 25% higher than that of gold-overcoated
photoresist gratings. It was encouraging for the improvement of LIDT. However, more inves-
tigations should be executed to further improve the LIDT of MDGs. Meanwhile, because of its
good optical property and high laser resistance, HfO2∕SiO2 has been the main stream materials
in MDGs.100,101

Fig. 9 The property of fabricated MDG: (a) SEM image of the MDG and (b) the DE of MDG in (a).
The first-order TM polarization: solid curve, open squares; the first-order TE polarization: solid
curve, open circles; and zeroth reflection TE polarization: dotted-dashed curve, open triangles.
The incident wavelength was 1053 nm.112

Fig. 10 SEM images of fabricated MDGs. (a) SEM of HLL MDG etched into HfO2 top layer with DE
of 95% for TE polarization at 1053 nm. Its groove depth was ∼200 nm and duty cycle was 0.4.
(b) SEM of HLL MDG etched into SiO2 top layer with DE of 94% for TE polarization at
1053 nm.114,115
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In 1999, Hehl et al. confirmed that the theoretical DE of nearly 100% can be obtained. The
MLD mirror was deposited with Nb2O5 (nH ¼ 2.375) and SiO2 (nL ¼ 1.46) on a plane fused-
silica substrate. The grating was etched into the top layer of SiO2 by ion beam etching. Its DE
was 97% in the first order for TE polarization at 532 nm. The LIDTs were 4.4 and 0.18 J∕cm2

under pulse duration of 5 ns and 1 ps at 532 nm.116 In 2003, Wei et al. investigated the basic
principle for the generation of high DE of MDG utilizing S matrix method and identified the
conditions for achieving high DE. They concluded that the diffraction of the grating can be
explained as the interference of a symmetric wave and an antisymmetric wave. The high
DE can be achieved when the two left diffracted waves generated by the symmetric and anti-
symmetric incident waves were in phase. The analysis provided good guidance for the design of
high-efficiency MDGs.117

In 2005, Kong et al. designed and analyzed a MLD mirror used in PCGs, the stack of
H3L(H2L)^9H0.5L2.03H, where H is HfO2 and L is SiO2. The transmittance was 0.29% at
1053 nm with 51.2 deg for TE polarization. The bandwidth was 70 nm centered at 1053 nm
with the reflectivity >99.5%. The experimental transmission was well agreement with the
theoretical design, as shown in Figs. 11.118,119

Non-uniform optical near-field distribution was one of the important factors limiting the
LIDTof MDGs. Consequently, optimizing the electric field distribution in MDGs was an impor-
tant means to further improve the LIDT. In 2006, Liu et al. deeply investigated the electric field
distributions in gratings and multilayer film region using Fourier modal method. The near-field
distributions in the gratings ridge was closely related to the gratings parameters, such as top layer
thickness, groove depth, duty cycle, and gratings material. They developed a merit function to
balance the DE and the electric field enhancement in the gratings ridge. After optimization, the
grating parameters can be obtained with lowest electric field enhancement, thus, higher LIDT, as
shown in Fig. 12.120–122 Néauport et al. fabricated several samples with different electric field
distributions inside the MDGs. The close optical and AFM inspection of damage sites showed
that damage occurs where the electric field was maximum calculated using the differential
method. Figure 13 shows the electric field distributions of two MDGs with different parameters.
Figure 13(a) shows obvious electric field enhancement in grating ridge and interface compared
to that of Fig. 13(b). The test showed that the LIDTs were 3.6 and 4.5 J∕cm2 for MDGs of
(a) and (b), respectively. It was verified that the LIDT of MDGs was determined by the value
of E2.123

In 2010, Wang et al. analyzed the restriction factors of widening bandwidth of MDGs,
including the reflectivity bandwidth of MLD mirror and the guided-mode resonance (GMR)
phenomenon. The existence of GMR in MDG would destroy the pulse spectrum shape and
depress the LIDT of MDG. They proved that the bandwidth of MDG was determined by the
bandwidth of high-reflectivity mirror for the first order transmitted diffraction. They inferred that
reducing grating period was an effective approach to eliminate GMR in MDG, thus, broadening
the bandwidth of MDG.124 Later, they designed an MDG with the groove depth <80 nm using
particle swarm optimization algorithm and Fourier modal method, which was much shallower

Fig. 11 The comparison of optical properties between theory and experiment. The stack was
H3L(H2L)^9H0.5L2.03H.118,119
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than the reported MDGs. The shallow groove depth was beneficial for the grating etch process.
Its bandwidth was 60 nm with DE higher than 97.5% centered at 800 nm.125,126

The DE and bandwidth of MDGs have been enough optimized.127–138 Afterward, the inves-
tigations mainly focused on the improvement of LIDT, which can be achieved through optimiz-
ing the structure and the fabrication technology, which will be discussed in Sec. 4.2.3.

4.2.3 Metal multilayer dielectric gratings

The MDG often consisted of several pairs of alternating high and low dielectric film, which
would cause mechanical stress among the multilayer stack. The mechanical stress can lead
to craze and reduce its properties, as shown in Fig. 14.139 For this reason, the MMDG model
was first proposed in 2006 by Bonod and Néauport140 One layer metal was inserted between the
substrate and the MLD stack, and some pairs of dielectric bilayers were replaced. The number of
bilayers was decreased, and thus the mechanical stress was reduced within the stack, which
effectively improves the DE, LIDT, and the stability of MMDG. Theoretical calculation showed
that the number of bilayers can be decreased to 7 from 9. This was the first report and prototype
of MMDG. Afterward, this research group devoted themselves to the investigation of MMDGs
and effectively improved the optical performance of MMDGs.140–142

Fig. 13 The electric field distributions in MDGs with different parameters. The residual layer thick-
ness, groove depth, and duty cycle were 0 nm, 303 nm, and 0.53 in (a) and 18 nm, 440 nm, and
0.35 in (b), respectively.123

Fig. 12 Near-field distributions of MDGs after optimization: (a) HfO2 top layer and (b) SiO2 top
layer. The top layer thickness, groove depth, and duty cycle were 700 nm, 540 nm, and 0.22
in (a) and 910 nm, 684 nm, and 0.32 in (b), respectively.120
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With the development of MMDGs, it was found that the insertion of metal layer can not only
decrease the mechanical stress, but also broaden the bandwidth. When the pulse duration was
further compressed to femtoseconds, the bandwidth of pulse can reach to 100 nm and even
200 nm. The work bandwidth of MDG cannot meet the performance requirements.143,144

Since metal layer always showed good reflectivity over broad bandwidth, Flury et al. reported
a high-efficiency wide-band MMDG. It showed DE higher than 95% over 200 nm wavelength
range centered at 800 nm for TE polarization. The experimental result verified that the DE of the
first order can reach to 98% and was coincide well with theoretical simulation, as shown in
Fig. 15. This kind of MMDG was a potential to realize high-efficiency CPA of femtosecond
pulses as short as 20 fs. However, they did not test the LIDT of the MMDG.145

Kong et al. have committed to the work of novel structure design, performance analysis, and
optimization. First, Ag layer was inserted between substrate and bilayers, the MMDG showed
DE higher than 97% over 130 nm bandwidth centered at 800 nm, and DE higher than 97% over
154 nm bandwidth centered at 1053 nm for TE polarization, respectively.146 Later, with three
kinds of dielectric materials, HfO2, SiO2, and Ti2O5, the designed MMDG showed DE higher
than 97% over 150 nm bandwidth centered at 800 nm,147 DE higher than 97% over 195 nm
bandwidth centered at 1053 nm for TE polarization, respectively.148 To further decrease the
number of dielectric layers, MMDGs, consisted of only single pair of bilayers, were designed.
And they showed DE higher than 97% over 120 nm bandwidth centered at 800 nm,149 and
DE higher than 97% over 160 nm bandwidth centered at 1053 nm for TE polarization,

Fig. 14 Crazing phenomenon observed on an HfO2∕SiO2 high-reflection e-beam evaporated
multilayer dielectric mirror. It was result from the mechanical stress among the multilayer stack.139

Fig. 15 The experimental first-order DE and zeroth reflected order spectra under incidence of
50 deg for TE polarization.145
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respectively.150 The above MMDGs exhibited good optical performance and favorable fabrica-
tion tolerance. It provided good theoretical guidance for the fabrication of MMDGs. However,
they did not show the corresponding fabrication technology and product.151,152

In 2010, Wang et al. reported a new MMDG, consisted of Ag, HfO2, and SiO2, with DE
higher than 97% over 200-nm bandwidth centered at 1053 nm for TE polarization. It only con-
sisted of a metal layer, a low-index material layer, and a high-index material with etched groove
depth, as shown in Fig. 16. The number of total layers was minimized, which was beneficial for
the fabrication.153 In 2013, Guan et al. designed an MMDGs centered at 800 nm. The DE, band-
width, and near-field distributions were theoretically analyzed in detail, especially the effect of
single match layer and multimatch layers on the optical performance of MMDGs. The MMDG
with single match layer showed that the minimum electric field distributes in the metal layer, and
the maximum electric field distributes in grating ridge, which can improve the LIDT of MMDG.
If the thickness and refractive index of the match layer were changed, the maximum electric field
in the grating ridge, match layer, and metal layer increased with the decrease of DE. For the
MMDG with multidielectric match layers, the bandwidth and the maximum electric field in the
metal layer decreased with the increase of bilayers, and the maximum electric field in the grating
ridge and match layer decrease, as shown in Fig. 17. The maximum bandwidth and minimum
electric field should be balanced according to the requirement.154,155

The previous gratings were all designed aiming at sole either TE or TM polarization. In 2012,
Hu et al. designed a polarization-independent wideband MMDG. The MMDG consisted of a
metal layer and a connecting layer, and the rectangular groove was etched on the top dielectric
layer. The MMDG exhibited the DE higher than 90% over 120 nm bandwidth centered at 800 nm
for both TE and TM polarization, as shown in Fig. 18. This MMDG had good potential appli-
cations in laser systems and spectrometers.156

4.3 Fabrication Technologies of PCGs

The final aim of PCGs was the application in laser systems. And the fabrication of PCGs was
much critical to the final optical performance. Consequently, the fabrication technologies of
PCGs should draw more attentions.

4.3.1 Metal gratings

The systematical investigation of ACGs has suspended for several years imputing its difficult
improvement of LIDT.157,158 However, until now, ACG was difficult to be absolutely replaced
for femtosecond pulses (especially for pulse shorter than 100 fs) attributed to its broad
bandwidth.159,160 In 2013, Poole et al. found that the LIDT has no dependence on laser pulse
duration for femtosecond laser, but showed clear dependence on Au surface morphology.

Fig. 16 (a) Structure of a new MMDG with one metal layer, one low-index dielectric layer, and one
high-index dielectric layer with etched groove depth. (b) Ultrabroad top-hat DE spectrum of (a). Its
parameters were: groove depth, 315 nm; residual thickness, 173 nm; low-index layer thickness,
140 nm; and duty cycle, 0.25.153
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Figure 19 shows the SEM images of the grating with different coating techniques.
Electromagnetic field modeling showed that non-conformal (NC) coating morphology aroused
significant local field enhancement near groove edges, lowering the DE and LIDT. And the
experimental results verified the effectiveness of the model. As shown in Fig. 20, it was found
that the conformal coating showed obvious higher LIDT than NC coating. Meanwhile, the LIDT

Fig. 18 (a) Schematic of the MMDG: n1 and n2 are refractive indices of grating grooves and
ridges, respectively; θi , incident angle; d , grating period; b, ridge width; hr , grating depth; and
hc , thickness of connecting layer. (b) The first-order diffraction efficiencies for both TE and TM
polarizations.156

Fig. 17 (a) Structure of MMDG with single dielectric match layer. (b) The electric field distribution
with parameters of MMDG: groove depth, 632 nm; match layer thickness, 169 nm; period, 931 nm;
and duty cycle, 0.26. (c) Structure of MMDG with multidielectric match layers. (d) The changes of
bandwidth and maximum electric field in the Ag layer versus the number of alternating bilayers.154
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had no dependence on pulse duration. Finally, they testified that the Ag-coated grating per-
formed higher LIDT than ACG, which maybe a satisfactory substitute.106 In 2014, Li et al. theo-
retically investigated the performance of ACGs with different profiles, such as rectangular,
sinusoid, and semisinusoid using RCWA.161 It was found that the duty cycle should be excess
of 0.5 for the rectangular or semisinusoidal groove, and duty cycle would cause DE to change
sharply at the short wavelength. The ACG fabricated with holographic recording method exhib-
ited DE excess of 94% for TM polarization at 808 nm, as shown in Fig. 21. In 2015, Muhutujiang
et al. investigated an approach, in which the gratings patterns were generated by directly etching
the quartz substrate. Its fabrication process was as follows: (i) preparation of a 220-nm-thick
photoresist layer on a quartz substrate; (ii) holographic exposure on the photoresist layer;
(iii) developing the grating masks; (iv) ion beam etching the quartz substrate; and (v) depositing
gold on the substrate grating. The fabricated ACG showed good DE, the average DE was 89.2%
over the wavelength 750 to 850 nm for TM polarization, and the peak DE is 90%. The SEM
image of the etched grating is shown in Fig. 22.162 Recently, Jin et al. have deeply studied the
damage process and the effect on LIDT for different fabrication methods, such as magnetron
sputtering and e-beam evaporation. The LIDTs were 0.59 and 0.43 J∕cm2 for ACGs fabricated
by magnetron sputtering and e-beam evaporation at pulse duration of 60 fs, respectively.
It showed that the adhesion between the gold film and the photoresist determined the damage
behavior, and the magnetron sputtering can produce ACGs with better adhesion, thus, improving
the LIDT.94,163

Fig. 19 SEM image of fabricated gratings: (a) conventional sputter-coated grating showing an NC
groove structure and (b) energetic sputter-coated grating showing more uniform groove
structure.106

Fig. 20 The dependence of pulse duration on LIDT. While the conformal (C) coating showed
higher LIDT than the NC coating, and there was no clear pulse duration dependence of the
LIDT.106
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4.3.2 Multilayer dielectric gratings

Previous work has adequately reported the theoretical design and experimental results on DE and
LIDT. However, fabrication technology, which was a much important procedure for the reali-
zation of the designed properties, has been barely reported. In 2005, Oliver et al. focused on the
fabrication of an MLD to allow the fabrication of a grating with higher DE and LIDT and inves-
tigated the effect of MLD on the holographic exposure quality. By modifying the MLD structure
and suppressing the reflectance of the MLD coating during holographic exposure, the straighter
sidewalls of the grating pillars can be obtained, thus, yielding a higher quality MDG with greater
control of duty cycle.164

In 2006, Ashe et al. systematically investigated the effectiveness of some wet-chemical clean-
ing processes on gratings for improving the DE and LIDT, which were commonly used in semi-
conductor chemical cleaning processes. It was found that the DE and LIDT can together be
improved with the Piranha cleaning process. The SEM images showed no visual contamination
after cleaning. This was promising for improving the optical performance of MDGs.165,166

In 2006, Kong et al. studied the effect on LIDT of MDGs for different fabrication processes.

Fig. 21 ACGs with different profiles: (a) sinusoid; (b) rectangular; (c) semisinusoid; and (d) the
fabricated grating with aperture of 200 mm × 400 mm.161

Fig. 22 SEM image of fabricated grating. The sinusoid profile ACG with line densities of 1740 l/
mm. Au layer thickness was 200 nm.162
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They found that the LIDT of MDG was obviously lower than that of MLD and the cleaning of
grating was beneficial for improving LIDT. Finally, they pointed out that the following methods
may improve the LIDT of MDGs. (i) Modifying the electric field distributions makes the peak
electric field not to distribute in the unsubstantial district. (ii) Modifying the fabrication tech-
nology decreases the defects and impurity in the films. (iii) The MLD can be cleaned by surface
treatment technology. (iv) Modifying the technology of e-beam etching reduces the change of
HfO2 stoichiometric proportion.167–169

In 2007, Lyndin et al. designed and fabricated an all-dielectric grating with top-hat high DE
over a broad spectral. As shown in Fig. 23(a), the grating was etched in high-refractive index
layer instead of the traditional low-index silica layer. The experimental result indicated that the
groove depth was 123 nm and duty cycle was 0.38. The average DE is 97% over 777 to 815 nm
under an incidence angle of 57 deg for TE polarization, which was well agreement with the
theoretical simulation, as shown in Fig. 23(b). The zeroth order DE was 2% on the average
and exhibited sharp peaks at the band edges.170

In 2007, Liu et al. proposed that the SiO2 material as the top layer of the MLD mirror for
grating fabrication was beneficial for improving the LIDT, and it was experimentally verified.
They designed an optimal design of (HLL)^9H as the MLD, the SiO2 top layer was optimized
considering the DE and the electric field enhancement. The average LIDT was 10 J∕cm2 under
12 ns pulses at 1053 nm.171,172

Liu et al. specially investigated the effect of the photoresist gratings with different profiles as
mask on the transferred grating profiles. They concluded that it was necessary to utilize high and
steep enough photoresist grating mask to obtain grating with vertical profiles, as shown in
Fig. 24.173,174

Recently, the investigations for the effect of electric field on LIDT were attractive. These
works focused on optimization of the electric field distributions in the grating ridges and the
damage process, the LIDT can be improved.175–185 Meanwhile, much research also verified that
the LIDT can also be improved through cleaning the surface, which can effectively reduce the
defects and impurity.186–189 Howard et al. proposed a chemical cleaning process to eliminate
the contaminants. Figure 25 shows that BARC and photoresist layers on the pillar tops were
effectively removed and the grating pillars were narrowed after the cleaning process.192

4.3.3 Metal multilayer dielectric gratings

In 2007, Canova et al. fabricated an MMDG with a silver mirror, a 30-nm protective layer of
Al2O3 and the grating etched in HfO2 layer, as shown in Fig. 26(a). It exhibited a 140-nm broad
bandwidth with the average DE of 95%, as shown in Fig. 26(b). They investigated the fabrication
technology of MMDG and pointed out that there were the following difficulties in the fabrication
process of MMDGs. (i) There was no adhesion layer between metal and dielectric to bond them

Fig. 23 (a) Cross-sectional view of the dielectric mirror-based leaky mode propagating in the
high-index layer and (b) experimental DE spectrum. The first-order average DE was 97% over
777 to 815 nm under an incidence angle of 57 deg for TE polarization.170
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Fig. 24 SEM images of photoresist grating and the etched SiO2 grating with different profile
masks. (a) Original photoresist grating mask I: groove depth ∼420 nm, duty cycle ∼0.22, and side-
wall angle ∼85 deg. (b) Grating etched into SiO2 with mask I: groove depth ∼485 nm, duty cycle
∼0.36, sidewall angle ∼85 deg. (c) Original photoresist grating mask II: groove depth ∼540 nm,
duty cycle ∼0.19, and sidewall angle ∼90 deg. (d) Grating etched into SiO2 with mask II: groove
depth ∼690 nm, duty cycle ∼0.23, and sidewall angle ∼90 deg. (e) Original photoresist grating
mask III: groove depth ∼550 nm, duty cycle ∼0.19, and sidewall angle ∼90 deg. (f) Grating etched
into SiO2 with mask II: groove depth ∼960 nm, duty cycle ∼0.22, and sidewall angle ∼90 deg.171

Fig. 25 SEM images showing MDG cross section (a) before chemical cleaning and (b) after clean-
ing. The cleaning process removed BARC and photoresist layers form the pillar tops and narrowed
the grating pillars.189
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and avoid delamination. (ii) The dielectric layers cannot be handled by high-temperature
annealing for removing possible defects, which may decrease the LIDT. (iii) It was difficult
to expose interferogram on the materials before the high-refractive index materials. (iv) To assure
the physically and chemically intactness of the metal mirror surface in the process of grating
etching, the etching chemistry and sputtering conditions were severely restricted. Although there
were too much technical difficulties and influences, the LIDT of MMDG was comparative with
that of MDG, 1.1 J∕cm2, which verified that the introduction of metal layer has no influence on
the LIDT.190

In 2009, Palmier et al. experimentally compared the reflectivity and LIDT properties of metal
multilayer dielectric (MMLD) mirror (Pyrex/20 nm Cr 150 nm Au (246 nm SiO2 155 nm HfO2)
^4) 579 nm SiO2 and MLDmirror (Pyrex/(115 nm HfO2 311 nm SiO2)^8) 115 nm HfO2 385 nm
SiO2, which were the fundamental component of PCGs. The MMLD, four pairs of dielectric
bilayers were replaced by the Au layer, was deposited by e-beam evaporation. The reflectivity is
shown in Fig. 27. It showed that MMLD and MLD exhibited high and flat reflectivity centered at
1053 nm, especially the ultrabroad bandwidth of MMLD, which verified the effectiveness of
broadening the bandwidth. The experimental result showed that the LIDT of MLD and MMLD
were all about 5 J∕cm2.113 In 2010, Néauport et al. reported a complete process of MMDG,
including design, fabrication, and test. With the goal of high DE and LIDT, to optimize the
parameters of the surface relief, the designed grating profile was trapezoidal geometry, instead
of traditional rectangle. The MMDG, which was deposited by e-beam evaporation, showed DE
reach 96% for TE polarization centered at 1053 nm, and the LIDT was about 3 J∕cm2 under
pulse duration of 500 fs, which was similar to that of MDGs.139

In 2014, Guan et al. pointed out that the surface relief of HfO2 material showed good band-
width, but it was difficult to etch. The surface relief of SiO2 material should etch big groove

Fig. 26 (a) Cross-sectional view of the MMDG and (b) the experimental and theoretical first-order
DE and zeroth reflected spectra under incidence of 57 deg for TE polarization.190

Fig. 27 Reflectivity of the designed MLD and MMLD measured under incidence of 70.6 deg for
TE polarization.139
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depth and line density, but it had the advantages of high LIDT and easy fabrication. To unite the
superiorities of HfO2 and SiO2 materials, a new type of MMDG was designed, as shown in
Fig. 28. The grating ridge consisted of one layer HfO2 sandwiched between two layers
SiO2. The bandwidth with DE higher than 90% was 200 nm, and 95% was 137 nm. The size
of fabricated MMDG was 50 mm × 50 mm. The test results showed that the experimental DE
was consistent with theoretical simulation, which verified the favorable fabrication tolerance.
The LIDT was 0.32 J∕cm2 under 45 fs pulse duration at 800 nm. The optical performance
of the MMDG was not the best among the reported MMDGs. However, its performance was
well consistent with the designed MMDG, which built the foundations for the functionization
and fabrication technology of MMDG.155 Wu et al. investigated the influence of annealing tem-
perature on MMLD. It indicated that the roughness of the MMLD changed slightly after
annealing. However, the resistance to chemical cleaning damage improved with the annealing
temperature increase, whereas the reflectivity decreased. The MMLD annealed at 250°C for 10 h
can be an optimal annealing process for the fabrication of MMDG.191 In 2016, Zhang et al.
pointed out that the reason for resistance improvement to chemical cleaning damage after
annealing was that one transition layer was produced between Au layer and SiO2 layer, and
the transition layer enhanced the adhesion between Au layer and SiO2 layer and blocked the
infiltration of acid solutions.192

Chen et al. deeply investigated and explored the fabrication process, including modification
of resist masks, the etching speed of different materials, and the cleaning of MMDG. The DE of
the fabricated MMDG had a peak DE of 95.1% at 810 nm and the maximum bandwidth is
169 nm with DE higher than 90%, the average DE was 93.71% under incidence of 53 deg for
TE polarization, the LIDTwas 0.32 J∕cm2 for 45 fs pulse duration. This was the first particular
report for the fabrication process.155,193–195

Fig. 28 (a) Structure of new MMDG. The grating ridge consisted of an HfO2 center layer sand-
wiched between two SiO2 layers. (b) Reflectivity of MMLD under incidence of 53 deg for TE polari-
zation. The theoretical reflectivity was coincided with the measured over the range of 600 to
800 nm. (c) SEM image of fabricated MMDG. Its duty cycle, period, and slope angle were
0.44, 565 nm, and 74 deg, respectively. (d) The first-order DE of MMDG under incidence of 53 deg
for TE polarization at 800 nm.155
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Recently, Zou et al. experimentally and theoretically investigated the effect of nodular defect
on damage of MMDG. It was found that the initial damages occurred in the grating ridge of the
perfect MMDG, whereas initial damages will occur in the district of nodular defect if nodular
defect exists. The damage process and the relationship between damage degree and the nodular
defect size were theoretically analyzed. It was concluded that local electric field enhancement in
nodular defect area would lead to the damage.196 Xu et al. reported a newMMDG with single Au
layer and one silica layer. Its LIDT can reach 0.40 J∕cm2 under 32 fs pulse duration, which was
twice more than that of gold-coated gratings. They theoretical predicted that the maximum LIDT
of MMDG was 0.60 J∕cm2.197

Although MMDG exhibited high diffraction, broad bandwidth, and high LIDT, the technique
was not mature enough to fabricate perfect MMDG due to the existence of metal layer. More
efforts should be paid to improve the performance of fabricated MMDGs.198

5 Discussions

The PCGs are still essential element for generation of ultrahigh intensity laser. And the optical
performance requirements are becoming more rigorous. The structures of PCGs are almost per-
fect after the intensive research. However, it is difficult to improve the optical performance
through optimizing the structures. In the past five years, the researchers are focusing on the
fabrication technologies and chemical treatment technologies to improve the LIDT.

However, there are still some barriers remaining to overcome to obtain PCGs with better
performance. We hold the opinion that there are still two aspects of work to be done in the
future. (i) The matching between the designed and fabricated structure. The shape of designed
groove is almost standard rectangle. However, it is difficult to etch the rectangle shape, and it is
close to trapezoid which leads to the disagreement between theoretical and experimental results.
In addition, it is fragile when the duty cycle is too small or the groove depth is too large. The
design of PCGs should refer to the fabrication technology, and makes it easy to fabricate. (ii) The
improvement of LIDT. The intensity of laser in ever increasing, Consequently, The LIDT should
be further improved. The LIDT of ACG cannot still be equated with that of MDG.

6 Conclusions and Future Prospects

The CPA technique has opened the door to develop ultrahigh intensity laser, and the performance
of PCGs plays a key role in the generation of ultrahigh intensity laser. In the past three decades,
significant progress on PCGs has been made. In this paper, we deeply review the progress on
ACGs, MDGs and MMDGs in terms of structures, optical performance, and fabrication tech-
nology. We believe that it is helpful for the comprehensive understanding on PCGs.
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