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ABSTRACT. We present and experimentally verify a deep learning approach to synchronously
measure the multi-beam pointing error for coherent beam combining systems. This
approach uses only one detector by acquiring the far-field interference focal spot,
which can greatly reduce the complexity in coherent beam combining systems with
high accuracy. The amplitude modulation is utilized to eliminate the confusion of
the label values in symmetric system. The position assist camera is used to acquire
accurate label value, which solves the mismatch between sample and label value
caused by ambient vibration in long-term data acquisition. In simulation and experi-
ment, the RMS accuracy is about 0.3 and 0.5 μrad, respectively, which can greatly
meet the pointing measurement requirement in coherent beam combining systems.
The result shows that this approach can be well applied to multi-beam coherent
combination for high-power laser systems.
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1 Introduction
The development of optical parametric chirped-pulse amplification technology promotes the
rapid progress of ultra-intense and ultra-short lasers.1–3 Hitherto, the output of ultra-intense and
ultra-short lasers facility have breakthrough 10 petawatts (PW) class.4–6 Many organizations
worldwide are working to further improve the output capacity of ultra-fast lasers.7 Nevertheless,
owing to the damage threshold and the aperture limit, the increase of single-channel output
scheme is facing difficult challenges. Coherent beam combination (CBC) is a promising tech-
nique to solve the output problem from another direction.8–10 Experts attempt to combine multi-
channel lasers to achieve higher output power. Several institutions have projected to utilize the
CBC scheme to improve the output capacity of their ultra-fast laser facilities to the 100 PW
class.5,7

In CBC research, the beam-pointing (tip and tilt) is a significant parameter that affects the
combining efficiency. The pointing synchronization requirement of multi-beam is particularly
important when the CBC technique is used in the high-power ultra-fast laser facility. In light
of previous research, the beam-pointing error should be controlled below 3.3 μrad to achieve
90% combining efficiency for a multi-channel CBC system with beam aperture of 20 mm.

*Address all correspondence to Chun Peng, pengchun@siom.ac.cn

Optical Engineering 086102-1 August 2023 • Vol. 62(8)

https://orcid.org/0000-0002-6724-1779
https://doi.org/10.1117/1.OE.62.8.086102
https://doi.org/10.1117/1.OE.62.8.086102
https://doi.org/10.1117/1.OE.62.8.086102
https://doi.org/10.1117/1.OE.62.8.086102
https://doi.org/10.1117/1.OE.62.8.086102
https://doi.org/10.1117/1.OE.62.8.086102
mailto:pengchun@siom.ac.cn
mailto:pengchun@siom.ac.cn
mailto:pengchun@siom.ac.cn


For 95% combining efficiency, the minimum beam-pointing synchronization requirement of
20 mm beam aperture is 2.4 μrad.10 It is a tough task to keep the pointing jitter under
5 μrad in such a laser facility. In the common method, the beam-pointing for multi-beam systems
is individually monitored by beam position sensors, such as complementary metal-oxide-semi-
conductor and charge coupled device (CCD). However, the multi-sensor and sampling optics will
significantly complicate the experiment structures. Thus, finding a new way to simplify the struc-
ture is necessary. For the reason that the pointing of every single beam can affect the focal spot
distribution, it is possible to derive pointing errors from the focal spot in multi-beam tiled-aper-
ture CBC systems. Deep learning is believed to be an outstanding solution, due to its excellent
image identification performance. In recent years, the application of deep learning in the CBC
system has achieved remarkable results, for instance, phase control, wave-front detection, and
phase optimization.11–13 In 2020, our group reported the simulation study of deep learning
technology applied to the parameter measurement of CBC system.14 However, these studies
are mostly carried out by theoretical simulation; experimental study is rare. Owing to the in-
fluence of experimental factors, practical application in experiment is a great challenge for the
deep learning approach. The collection of a large number of samples with accurate label values
is crucial in the experiment. Thus, experimental study of deep learning in CBC is of great
significance.

Here, we propose a far-field multi-beam pointing measurement approach by using the deep
convolutional neural network (DCNN) algorithm for CBC systems. This study is an experimental
validation of previous work,14 which proves the experimental feasibility of using a deep learning
method to synchronously measure multi-axis beam-pointing in CBC system. Monitoring the
far-field focal spot by only one detector, this approach can greatly simplify the optical structure
with high accuracy. We employ the amplitude modulation and the position assist to establish
a far-field pattern set which have the one-to-one relationship between each sample and its label
value. In this study, we first analyze the theoretical principle to prove in detail the amplitude
modulation method can solve the label value confusion problem. Meanwhile, the simulated
far-field patterns are utilized to demonstrate the identify capability of DCNN. Then, a two-beam
coherent combination setup is built to further verify the practical feasibility of the measurement
approach. Furthermore, we also study the influence of ambient vibration on the measurement
accuracy.

2 Principle and Simulation
Filled-aperture combining and tiled-aperture combining are two categories of CBC technique.
For large aperture ultra-fast lasers systems, tiled-aperture is regarded as a more suitable tech-
nique. The beam-pointing instability leads to the separation of far-field focal spot in multi-beam
tiled-aperture coherent combination system, which degrades the combining efficiency. In a multi-
channel tiled-aperture CBC system, the key task is to increase the peak intensity of the focal spot.
Therefore, the combining efficiency of tiled-aperture CBC ηt is usually defined by the peak inten-
sity, which can be written as Eq. (1):

EQ-TARGET;temp:intralink-;e001;114;247ηt ¼
ICBC�P
n

ffiffiffiffiffi
In

p �
2
; (1)

where In is the peak intensity of the n’th sub-beam, and ICBC is the peak intensity of the
combined beam.

We consider a continuous reference laser measurement model involving only beam pointing
errors. For n similar Gaussian beams with the same diameter D and wavelength λ, the amplitude,
the near-field positions, and the tip/tilt of the n’th sub-beam are An, ðxn; ynÞ, and θxn, θyn, respec-
tively. The electric field distribution of the n’th sub-beam is represented as
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In the far-field, the beam focused by a lens of the focal length f is similar to the Fourier
transform

EQ-TARGET;temp:intralink-;e003;117;712Enðu; vÞ ¼
ZZ

Enðx; yÞ exp
�
−i

2πðxuþ yvÞ
λf

�
dx dy; (3)

where ðu; vÞ is the beam position in the focus plane. So, we can deduce that the far-field
distribution of the nth sub-beam as follows:
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The far-field coherent combination intensity of the n-beam system is

EQ-TARGET;temp:intralink-;e005;117;572IPðu; vÞ ¼
����Xn

En

����2: (5)

In this work, we use a Nvidia 2080ti graphic processing unit to simulate and calculate.
The numerical simulation of two beams is shown in Fig. 1, where we utilize two beams
with a wavelength of 800 nm and a diameter of 6 mm to combine the far-field focal spot in
the focal plane with a precision of 4 μm pixels. The far-field interference fringes and near-
field beams distribution are shown in Figs. 1(a) and 1(b). We set the beam-pointing vector to
~θ ¼ ½θx1; θy1; θx2; θy2�, where θx is the tip and θy is the tilt. According to Eqs. (4) and (5), we can
obtain Eqs. (6)–(8):

Fig. 1 Simulation of two beams: (a) far-field interference fringes without pointing error, (b) near-
field beams distribution, (c), and (d) confusion of label values: far-field interference patterns

with the same amplitude, (c) ~θ ¼ ½20;20; 0;0� μrad, (d) ~θ ¼ ½0;0; 20;20� μrad, (e), (f) far-field

interference patterns with amplitude modulation A1 ¼ 1; A2 ¼ 1.5, (e) ~θ ¼ ½20;20; 0;0� μrad, and
(f) ~θ ¼ ½0;0; 20;20� μrad.
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where E1ðu; vÞE�
2ðu; vÞ þ E2ðu; vÞE�

1ðu; vÞ is the interference term of beams 1 and 2, jE1ðu; vÞj2
and jE2ðu; vÞj2 are their intensity term, respectively.

In the deep learning measurement approach, the one-to-one correspondence between the
sample and its label value is the premise of achieve excellent measurement result. However, the
two beams with symmetrically distributed ðx1 ¼ −x2; y1 ¼ y2Þ cannot build this relationship due
to the label value confusion, which will lead to the decrease of the recognition effect of DCNN.
This phenomenon can be described by Eqs. (6)–(8). When A1 ¼ A2, whether the pointing jitter
occurs in beam 1 or beam 2, leads to the same far-field distribution. In this way, the one-to-one
correspondence between the far-field pattern and the label value is confused. For example, the
far-field interference pattern with the same amplitude is shown in Figs. 1(c) and 1(d), beams 1 or
2 with 20 μrad of tip and tilt present the identical far-field interference fringes. To solve this
problem, we employ amplitude modulation for beam 2. So, the jE1ðu; vÞj2 and jE2ðu; vÞj2 terms
in Eqs. (7) and (8) are different. Figures 1(e) and 1(f) show the far-field interference with ampli-
tude modulation. We can see that under amplitude modulation, the beam-pointing change of
different beams corresponds to disparate interference pattern. Hence, amplitude modulation
is a crucial method to distinguish beams in symmetric multi-beam systems.

To achieve high precision measurement, proper network construction is essential. In this
work, we modify part of the layers of a mature Google inception-v3 model for transfer learning
to save calculation time.15,16 For the input layers, the input data are replaced by the pseudo color
far-field interference patterns of size 160 × 160 × 3 and its label values to meet the network
standard. The last layer is substituted for the beam-pointing vector and retrained. In this way,
the output data are the beam-pointing error value identified by DCNN. Furthermore, we employ
the mean squared error (MSE) as the loss function of the DCNN model. The loss function is

expressed as LðMSEÞ ¼ k ~̂
θnp −

~̂
θnlk

2

and, where ~̂
θnp and ~̂

θnl are the beam-pointing vector
predicted by the DCNN and the corresponding label vector of the n’th sample.

Figure 2 shows the training process of DCNN. We feed the far-field pattern samples with

label values into the DCNN pre-scheme. The network calculates the loss function base on ~̂
θnp

and ~̂
θnl to adjust its weight. Through multiple iterations of training, the loss function is optimized

to the expected value. To test the performance of the trained DCNN model, some untrained
samples of testing set are fed into the DCNN model for measurement. The result of the testing
set can reflect the generalization of DCNN, which is the ability of the DCNN model to recognize
new data.

We randomly generate 21,000 far-field interference pattern samples with different label
values, the tip and tilt of each beam is within ½−20;20� μrad. The other simulation parameters
of the training samples are identical to Fig. 1. We use 14,000 samples as the training set, 6000
samples as the validation set, and the other 1000 samples as the testing set. Here, we define the
deviation of the beam-pointing error is the absolute value of the predicted value subtracted from
its label value. The simulate root mean square (RMS) value of the beam-pointing deviations is
½0.203; 0.272; 0.171; 0.180� μrad. To evaluate the performance of DCNN, the maximum beam-
pointing deviations 0.2722 μrad is adopted. It shows that the theoretical RMS accuracy of
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this approach is <0.3 μrad, which completely accord with the pointing synchronous requirement
of high combining efficiency tiled-aperture CBC system.

3 Experiment
The simulation result theoretically demonstrates the feasibility and the accuracy of the far-field
beam-pointing measurement approach. In this section, we carry out two-beam pointing meas-
urement experiment to further evaluate the practical performance of this approach. As shown in
Fig. 3, a two-beam coherent combination sample acquisition setup is constructed. A 50% beam
splitter divides a continuous-wave laser with a wavelength of 808 nm into two beams. A half
wave plate is used to modulate the amplitude ratio of beams 1 and 2. In this experiment, the
amplitude intensity of beam 2 is modulated to 1.5 times that of beam 1. The beam diameter
is extended to 6 mm by the beam expander. Two piezoelectric inertia actuators are used to adjust
the tip and tilt of beams 1 and 2. The far-field interference fringe pattern is generated by focusing
beams 1 and 2 into the same lens with a focal length of 750 mm. Here, we use a CCD camera 1
with 4 μm pixel resolution to collect the pattern as the training sample for DCNN. To avoid the
mismatch between the sample and label value caused by ambient vibration, we use cameras 2 and
3 monitoring the far-field position of two beams as the position assist camera to obtain precise

Fig. 3 Sample acquisition setup. Here, cameras 2 and 3 are only employed for label value
assistance in the sample collection stage. These two cameras are designed to reduce the influ-
ence of non-experimental factors. In the measurement stage, only camera 1 is used.

Fig. 2 Training and measurement process of DCNN.

Li, Peng, and Liang: Deep learning assisted far-field multi-beam pointing. . .

Optical Engineering 086102-5 August 2023 • Vol. 62(8)



label values of the training sample. The focal length of the lens before camera is 600 mm.
We regard the center of mass of the focal spot as the center of the monitored beam, so we
can calculate the beam-pointing change based on the movement of the center of mass of the
focal spot. Center of mass algorithm can be used to calculate the change of beam-pointing of
1/100 pixels. Compared with directly recording the change of piezoelectric inertia actuator,
center of mass algorithm can obtain more accurate label values. Note that during the measure-
ment stage, only camera 1 is used.

First, we control the piezoelectric inertia actuator to collect 11,000 far-field interference
pattern samples with different pointing label values under low ambient vibration conditions.
These experimental samples are utilized to train the DCNN model, and the train process is the
same as in part 2. We use these samples as the training set, the validation set and the testing set in
a ratio of 7:3:1. Figure 4 shows the experimental data and results. The experimental far-field
pattern and the loss function curve during training are shown in Figs. 4(a) and 4(b). The training
curve illustrates that the loss function of the training and validation set convergent rapidly
with the epoch increase. This also shows that the model has stable and excellent performance.
Figures 4(c) and 4(d) show the tip and tilt deviation distribution of beams 1 and 2 for
1000 testing samples. The RMS values of the testing set on the trained DCNN model is
½0.384; 0.452; 0.372; 0.489� μrad. In general, the experimental results show good agreement
between theory and experiment on performance of DCNN for the reason that the pointing
synchronization requirement for 95% combining efficiency of the CBC system with 6 mm beam
aperture is about 8 μrad; 0.5 μrad is quite excellent accuracy.

However, due to the inaccurate label value, there is a certain deviation between the exper-
imental results and the theoretical results. Ambient vibration is the main factor that affect DCNN
performance in experiment. The actual pointing instability of the far-field interference pattern
may be slightly different from its label value under the vibration disturbance of the surrounding
instrument. To clarify the influence of ambient vibration on the measurement performance of
DCNN, we carry out further study.

Fig. 4 Experimental data and results. (a) Far-field interference fringes patterns without pointing
error. (b) MSE changes of training and validation set during training. (c), (d) The tip and tilt test
deviation of 1000 testing set samples. (c) Beam 1 and (d) beam 2.
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Then, we collect 11,000 patterns in high ambient vibration to consider the effect of ambient
vibration on measurement capacity. The proportion of training, validation, and testing set
are the same as before. The RMS value of beam-pointing in high ambient vibration is
½1.336; 1.210; 1.213; 1.115� μrad. There are significant differences between the measurement
results of the two ambient vibration. This phenomenon indicates that the high ambient vibration
has a great influence on our method. Hence, a vibration isolation environment would increase
the measurement accuracy of DCNN.

Finally, to comprehensively consider the measurement capacity, 16,000 far-field interference
patterns are randomly selected from the two ambient vibrations, of which 10,500 are utilized as
the training set, 4500 as the validation set, and other 1000 samples as testing set. We can obtain
the RMS accuracy of testing set is ½0.694; 0.665; 0.603; 0.685� μrad. The results are between
two ambient vibrations, which supports the conclusion that low ambient vibration can improve
the measurement accuracy of DCNN.

In this section, we apply the DCNN method to the two-beam coherent combination
setup, which achieved excellent performance. The measurement results in different environments
show that reducing ambient vibration can obtain more accurate measurement results. On the
basis of experimental results, this approach is feasible to simplify the optical structure and
has high measurement accuracy. In the future, we will attempt to apply the deep learning tech-
nology to the measurement and control of more complex multi-beam coherent combination
systems.

4 Conclusion
In summary, a deep learning assisted far-field multi-beam pointing measurement approach is
presented. This approach employs the far-field interference pattern to train the DCNN model
to recognize the multi-beam pointing error simultaneously. The amplitude modulation method
is introduced to distinguish the beam-pointing variation in symmetric CBC systems. We initially
employed the simulated two-beam far-field interference as training samples to verify the feasibil-
ity and accuracy. The RMS value was <0.3 μrad. Afterward, we build a two-beam coherent com-
bination experimental setup to verify the generalization ability of DCNN model. The measured
RMS value of beam-pointing error achieves 0.5 μrad in the experiment. The influence of ambient
vibration is studied. The RMS value of high ambient vibration and comprehensive ambient vibra-
tion are about 1.3 and 0.7 μrad, respectively. The measurement results show that the approach
has high precision performance and well meets the pointing synchronous requirement of 95%
combining efficiency of CBC system. It is of great significance for simplifying the measurement
optical structure of a multi-beam coherent combination system.

Code, Data, and Materials Availability
The data in this manuscript are publicly available in scienceDB at https://doi.org/10.57760/
sciencedb.08484.
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