6 Mathematical Background and Notation

Pulse-Like Functions

Pulse-like functions are localized in one or more indepen-
dent dimensions. There are many processes in optics that
are well modeled by these functions, including a burst of op-
tical energy from a pulsed laser (temporal localization), the
aperture of a lens (spatial localization), or a band-pass spec-
tral filter (wavenumber localization). Furthermore, many
periodic structures like diffraction gratings or lens arrays
can be built up using a pulse-like function as the unit cell.

This Field Guide relies heavily on five pulse-like functions:
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The functions defined here are used throughout the litera-
ture with slightly different notation conventions. This Field
Guide uses the selected definitions so that all functions are
symmetric about x = 0 and integrate to unity:

fiop(x) dx=1

where p (x) is any of the pulse functions defined above.
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Linear Shift-Invariant Systems 27

Causality

Causality is a property that is most widely applicable to
time-domain systems. A causal system has no output until
the input is active. Mathematically, this places the following
limitation on the impulse response:

h() =0 Vt<O

Causality is important for physically realizable transient
systems. However, for functions of position, there is gen-
erally no practial importance to restricting the output for
x < 0. For example, imaging systems with negative magni-
fication produce outputs for x < 0, even if the input is zero
for x < 0.

Kramers-Kronig Relationships

The requirement that A (¢) = 0 for ¢ < 0 for causal systems
places restrictions on the relationship between the real and
imaginary parts of the Fourier transform. An analytic func-
tion A (¢) is causal, and its Fourier transform is

F{@W}=F@) =F.(v) +iF;(v)
The real and imaginary parts of F'(v) satisfy
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The symbol & denotes the Cauchy principal value of the
integral, which dictates how to deform the contour of inte-
gration due to the pole at v" = v.

The Kramers—Kronig relationships place important re-
strictions on physical parameters of optical problems, such
as the complex index of refraction of a medium. When
dealing with an optical problem in the frequency domain,
care must be taken to ensure that the Kramers—Kronig
relationships are satisfied in order to obtain physically
meaningful results.
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Discrete Convolution

Define discrete convolution of two sequences f * A to be

8r = (f*h)k = Z fmhk—m

m=—oo

For finite sequences, summation limits can be narrowed to
only accommodate the effective support of both sequences:
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An alternative way of calculating convolution is
G,=F,H, - 8k = D1 {Fan}

which is faster to compute given the optimizations available
for DFT. The caveat is that the DFT method introduces an
implied periodicity, and as a result, the beginning of one
period may interact with the end of the other. This calcula-
tion is denoted as circular convolution, as opposed to the
previously introduced linear convolution.
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Two sequences of size N1 and Ny need to be padded with
AN; = Noy — 1 and ANy = N7 — 1 zeroes, respectively, in
order for circular and linear convolutions to produce the
same results.
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62 Propagation of Optical Fields

Plane Wave Spectrum

The direction of propagation of a plane wave is

k= VX + '\[yf’ + V.2
where v, 7,, and 7y, are the direc-
tion cosines given by the cosine of
the angle between k and the coor-
dinate axes, and they satisfy

h{xz + “lyz + “122 =1

A plane wave with wavenumber k& = 2m/\ propagating
along k can be expressed as

u(x,y,2) = uge' LI

Consider the fields in the z = 0 plane written in terms of
their Fourier transform:

u(ey,z=0) = [[" UEnz=00e?"E+Wagdy

The direction cosines can be expressed in terms of the spatial
frequencies as

Ye=AE oy =Am =122 (E2 4 92)

The inverse Fourier transform is just a superposition of
plane waves propagating in different directions, which gives
rise to the term plane wave spectrum or angular spec-
trum. For spatial frequencies

kZ (224_“2) <1

the direction cosine v, is purely real, and the plane wave is
propagating. For spatial frequencies

A2 (E2+92)>1

the direction cosine v, is imaginary, and the plane wave
is evanescent. Evanescent waves decay exponentially and
can only be observed in the near field.
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Channeled Spectropolarimetry

Polarimetry involves the measurement of the vector na-
ture of the optical polarization signature. Because opti-
cal detectors do not generally respond to polarization, po-
larimeters operate by modulating the intensity of the light
in a polarization-dependent fashion. An important class
of polarimeters are the channeled polarimeters that ac-
complish this by creating FDM channels in space, time,
wavenumber, angle, or some other modulation dimension.

Consider a beam of light E = u, X + u,y. The Stokes para-
meters describing its polarization state are
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This beam is analyzed by a linear polarizer rotating at a
constant angular velocity 0 = 2mvt. This analyzer produces
a time-varying irradiance

I = % [ 1 cos20 sin20 0 ]T -S()
= % [s0(2) + 571 (2) cos(4dmvgt) + s9(¢) sin(4mvgt) |
The resulting irradiance is a multiplexed signal with the
so information carried in a channel centered at v = 0, the

s1 information in the real part of a channel centered at
v = 21, and the sy information in the imaginary part of a

FUM)} channel centered at v =
Sy (v + vg) 2v9. More-complicated
So(») strategies have been de-

veloped that modulate in

/\ time, space, wavenumber,
v . .

: angle of incidence, and

—2vg 2vg combinations of multiple
1 —iS2(v + vg) independent variables.
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