Paper
29 April 2003 High-voltage atomic force microscopy: a new technology for nanoscale optical devices
Yossi Rosenwaks, Michel Molotskii, Alex Agronin, Pavel Urenski, Gil Rosenman
Author Affiliations +
Proceedings Volume 5118, Nanotechnology; (2003) https://doi.org/10.1117/12.498327
Event: Microtechnologies for the New Millennium 2003, 2003, Maspalomas, Gran Canaria, Canary Islands, Spain
Abstract
Reversal of the spontaneous polarization direction under an applied electric field is a basic property of ferroelectrics. However the traditional techniques used for fabrication of domain gratings have been able to produce domains not smaller then 2 micrometers. Sub-micron and nanometer scale domains may be fabricated using atomic force microscopy based techniques; however, to date there was no success in fabricating stable domains that elongate without widening throughout thick ferroelectrics. A breakthrough in the field emerged with the recent development of the high voltage atomic force microscope that enabled to obtain sub-micrometer stable domain configurations in bulk ferroelectrics. Diverse stable domain configurations were fabricated in several ferroelectric crystals like LiNbO3 and RbTiOPO4. Studying the influence of the applied high voltage, and the tip velocity on the domain strips has allowed fabricating domain gratings (with a domain width of 590 micron) useful for backward propagating quasi-phase-matched frequency conversion. It is found that string-like domains are formed due to the super-high electric field of the high voltage atomic force microscope tip. The domains, which resemble channels of an electrical breakdown, nucleate under an electric field of around 10 in a power of seven Volts per centimeter at the ferroelectric surface, and grow throughout the crystal bulk where the external electric field is practically zero. A theory explaining the shape of the formed domains shows that the driving force for the domain breakdown is the decrease of the total free energy of the system with increasing domain length.
© (2003) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Yossi Rosenwaks, Michel Molotskii, Alex Agronin, Pavel Urenski, and Gil Rosenman "High-voltage atomic force microscopy: a new technology for nanoscale optical devices", Proc. SPIE 5118, Nanotechnology, (29 April 2003); https://doi.org/10.1117/12.498327
Lens.org Logo
CITATIONS
Cited by 2 scholarly publications.
Advertisement
Advertisement
RIGHTS & PERMISSIONS
Get copyright permission  Get copyright permission on Copyright Marketplace
KEYWORDS
Crystals

Nanodomains

Atomic force microscopy

Polarization

Photonic crystals

Atomic force microscope

Fabrication

Back to Top