Micro-Light emitting diodes (µLEDs) are attracting broad interest because of their low power consumption, compact size and high brightness. However, µLEDs suffer from low outcoupling efficiency due to the high refractive index mismatch between air and the semiconductor. Recent progress in nanophotonics has led to the demonstration that metasurfaces integrated with emitters can provide an opportunity for tailoring the emission. We have designed and fabricated plasmonic metasurfaces onto a GaN/sapphire wafers to tailor the emission of InGaN quantum wells for µLEDs. We have investigated the far-field photoluminescence emission of samples with different metasurfaces, optimizing the light emission and outcoupling.
The emission pattern of Light-Emitting Diodes (LEDs) is Lambertian, which requires secondary optics to improve directionality. In addition, Gallium Nitride (GaN) based LEDs and micro-LEDs (μLEDs) have low outcoupling efficiency due to the high refractive index difference between air and GaN. Here, we experimentally investigate the impact of introducing a simple design of aluminum (Al) nanoparticles arrays (metasurfaces) to control the far-field emission of InGaN green emitting quantum wells (MQWs). This tailoring of emission originates from the near-field coupling between the InGaN MQWs and the resonant nanoparticles. Fourier microscopy measurements reveal that the period of the Al array controls the angular photoluminescence (PL) emission pattern. Furthermore, we obtain a five-fold enhancement of the collected outcoupled light intensity by implementing Al metasurfaces to the InGaN MQWs.
The control of light emission from InGaN quantum wells (QWs) is crucial for improving the performance of LEDs in various applications. Resonant plasmonic nanostructures were demonstrated to affect the properties of coupled emitters significantly. Here, we fabricate Al nanodisks on top of a GaN/sapphire wafer to control the angular far-field emission and enhance the collected light. This far-field photoluminescence (PL) emission is characterized by Fourier-imaging microscopy. Furthermore, we study the relationship between the PL and the pumping laser power, which is required to obtain enhancement in the collected light. The collection enhancement is up to a factor 3.2.
We recently introduced laminate metamaterials composed of a dielectric ABC layer sequence made by atomic-layer deposition. The ABC sequence breaks inversion symmetry, allowing for second-harmonic generation. Here, we discuss 3D polymeric woodpile photonic crystals conformally coated with such ABC laminate metamaterials (unpublished). In our experiments on such meta-crystals with 24 layers and 600 nm rod spacing at around 800-900 nm fundamental wavelength, we find up to 1000-fold enhancement of the second-harmonic conversion efficiency as compared to the same ABC laminate on a planar glass substrate (for 45 degrees angle of incidence with respect to the substrate and p-polarization).
To clarify the underlying mechanism, we have performed extensive numerical calculations based on solving the full-wave problem for the fundamental wave, computing the second-harmonic 3D source-term distribution assuming tensor elements for the ABC laminate as found previously, and numerically computing the resulting emitted second-harmonic wave. This analysis indicates that the enhancement is consistent with guided-mode resonant excitations at the fundamental wavelength inside of the 3D meta-crystal slab, leading to a standing-wave behavior providing beneficial local-field enhancements.
The availability of optimum textures for the purpose of light trapping in solar cells is at stake. Here, we discuss how they can be obtained with a large-area scalable bottom-up approach that utilizes as a template monolayers of densely packed nanospheres from a colloidal solution with tailored size distribution.
Theoretically, we show that the surface textures' geometry can be predicted and tuned from a colloidal solution with given nanosphere sizes and relative occurrence probability. With only simple monolayers comprised of two nanosphere size species, we show that one can already obtain a useful scattering pattern relevant for rear scattering light trapping textures. We proceeded to study the application of such textures in thin-film crystalline silicon (c-Si) solar cells. Such monolayers can be tuned to provide diffraction patterns, which form an annulus in Fourier space such that stronger scattering occurs at oblique angles. For such two species nanosphere monolayers, the nanosphere sizes dominantly influence the diffraction efficiency and minimum and maximum scattering angles. The relative occurrence probability of each nanopshere species influences the amount of diffraction states accessible, which translates to how broad the annulus region in Fourier space can be. The simplicity of the monolayer and the behavior of the scattering response allows to easily estimate nanosphere size ranges of interest by considering the radiation condition in c-Si and in air.
In optimizing the monolayer parameters to obtain optimum rear scattering light trapping textures, we inspect approaches that avoid the severe computational costs, which typically follow the modeling of random scattering geometries. In particular, we investigate the applicability of utilizing the surface texture's Power Spectral Density (PSD) and alternatively rigorous diffraction calculations in a semi-infinite c-Si superstrate to deduce net short-circuit current enhancement dependence on the monolayer parameters. The widely used PSD based prediction is shown to significantly deviate in important parameter ranges, where an optimal response can be obtained. This is related to the limitation of the PSD to be used as a predictor for the scattering response at textures with a notable height modulation. In the regime where the PSD fails to be predictive, an excellent prediction on the short-circuit current enhancement can be obtained with minimal computational costs by only examining the diffraction efficiencies in a selected wavelength range where light trapping has its largest impact. We show that the integrated diffraction in the directions of interest at the wavelength of 700 nm is sufficiently representative for the considered 1 μm thin-film c-Si cell and light trapping scheme. Fullwave simulations reveal that the integrated diffraction at 700 nm and the short-circuit current have coinciding trends in their dependency on the nanosphere size distribution.
We furthermore explore the usage of the nanosphere monolayer template to obtain front surface textures, which provide mainly anti-reflection properties. This is done by considering an inverse pattern of the template to make use of the needle-like structures that emerge from the inverted nanosphere monolayer. The conditions needed for the monolayer parameters in order to ensure broadband suppression of reflection are discussed.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.