We study the operating speed of high-speed photodetector based on GaSb/GaInAsSb/GaAlAsSb heterostructure with frontal bridge contact depending on the wavelength, radiation power, and bias voltage. The ultra-fast fiber lasers and high-speed oscilloscope were used for measurements.
We simulate supercontinuum generation in a fiber pumped by noise-like laser pulses for possible use in mid-IR spectroscopic breath analysis. The study uses a commercially available InF3 ZBLAN fiber and a Tm-doped all-fiber passively mode-locked laser. The supercontinua are modeled with input laser parameters in two different generation regimes with an average power of 560 mW and pulse durations of 300 and 800 fs. The maximum numerically achieved spectrum extends from 1 to 8.4 μm.
We have proposed a concept of monitoring ice ball formation in biological tissues during cryodestruction process via spatially-resolved detection of elastic light backscattering. For this purpose, we developed an experimental setup for study cryodestruction by using applicators based on sapphire shaped crystals with internal channels for optical irradiation of biotissues and detection of backscattered light. Due to the unique physical properties of sapphire, i.e. high thermal, mechanical, and chemical strength, high thermal conductivity and optical transparency, the sapphire cryoapplicators yield combination of the tissue cryodestruction with the optical control of tissue freezing. We have shown experimentally that using the proposed concept of applicator with several channels, it is possible to monitor changes of the ice ball during the cryodestruction process.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.