In-vivo, real-time study of the local and collective cellular biomechanical responses requires the fine and selective control of the cellular environment. Optical manipulation provides a suitable pathway to achieve non-contact, selective, local, temporal and spatial stimuli. The spectacular photomechanical properties of photoactive bio-substrates such as azobenzene-containing thin polymer films are a new promising strategy to achieve optically triggered local mechanical stimulation of cells. Excited cells exhibit spectacular morphological modifications and area shrinkage, which are dependent on the illumination. In this work we demonstrate that the capabilities of photomechanically active azocontaining substrates to optically stimulate cells’ mechanical response can be strongly influenced by the adhesion binding agent used to deposit the living cells on the photoactive layer. This provides a further tool for the photomechanical control of the cellular environment and of the cellular response.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.