The Ultraviolet Imager (UVI) instrument is a very challenging imager developed in the frame of the SMILE-ESA mission. The UV camera will consist of a single imaging system targeted at a portion of the Lyman-Birge-Hopfield (LBH) N2 wavelength band. The baseline design of the imager meets the requirements to record snapshots of auroral dynamics with sufficient spatial resolution to measure cusp processes (100 km) under fully sunlit conditions from the specified apogee of the spacecraft. To achieve this goal, the UVI instrument utilizes a combination of four on-axis mirrors with an intensified FUV CMOS based camera. The mirrors will be coated with spectral selective interferometric layers to provide most of the signal filtering.
The objective of these filters is to select the scientific waveband between 160 and 180 nm. The combined four mirrors have to give an out-of-band rejection ratio as high as possible to reject light from solar diffusion, dayglow and unwanted atomic lines in a range of 10-8 – 10-9. Different multilayer coatings are considered and optimized according to the π-multilayer equation for different H/L ratio and for different angles of incidence.
Our theoretical evaluation shows a modification of the reflectance spectrum as a function of the angle of incidence, so that the optical beams hitting the different mirrors can have different optical properties depending on the optical fields and the distribution of the rays on the pupil. We will evaluate the effect of fields on the spectral throughput of the UVI instrument based on its optical design. This analysis will be done using the Code V ray-trace software and proprietary scripts.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.