A method of hybrid integration of quantum dot microdisk lasers with silicon wafer is proposed and realized. In addition to the possibility of combining microlasers with various silicon-based electronic and photonic devices, this makes it possible to significantly improve heat removal from the active region of the microlaser. The thermal resistance normalized to the mesa area reaches the level of about 0.002 (K/W)*cm2, which is significantly lower than the corresponding values of QD microlasers on GaAs substrate and monolithically grown on Si. As a result, the threshold current as well as current-induced shift of emission wavelength are reduced in continuous-wave regime.
We show that using dense arrays of InGaAs quantum well-dots enables uncooled high-frequency applications with a GHz-range bandwidth. A maximum 3-dB modulation frequency of about 6 GHz was found. The K-limited maximal frequency of 13 GHz was estimated from the modulation response analysis. The experimental values of the energy-todata reaches 1.5 pJ/bit for the smallest diameter under study (10 μm). A 23 μm in diameter microlaser exhibits open eye diagram up to 12.5 Gbit/s and is capable of error-free 10 Gbit/s data transmission at 30°C without temperature stabilization. Our results demonstrate the potential to achieve miniature high-speed on-chip light sources for optical communication applications using lasers with a diameter of only a few micrometers.
A combination of high operation temperatures and small sizes of diode lasers directly grown on silicon substrates is essential for their application in future photonic integrated circuits. In this work, we report on electrically-pumped III-V microdisk lasers monolithically grown on Si substrates with active regions of two kinds: either an InGaAs/GaAs quantum well (QW) or InAs/InGaAs/GaAs quantum dots (QDs). Microdisk resonators were defined using photolithography and plasma chemical etching. The active region diameter was varied from 11 to 31 µm. Microlasers were tested without external cooling at room and elevated temperatures.
The QW laser structure was epitaxially grown by MOCVD on silicon (100) with an intermediate MBE-grown Ge buffer. Under pulsed injection (0.5-µs-long injection pulses with 150 Hz repetition rate), lasing is achieved in QW microlasers with diameters of 23-31 µm with a minimal threshold current density of 28 kA/cm^2. Quasi-single mode lasing (SMSR is up to 20 dB) is observed with emission wavelength around 988 nm. To the best of our knowledge, this is the first quantum well electrically-pumped microdisk lasers monolithically deposited on (001)-oriented Si substrate. Quantum wells are typically characterized by high optical gain and high direct modulation bandwidth, which can be important in view of further miniaturization of microlasers and their future application. The sidewall passivation can be helpful to reduce the threshold current.
As compared to QWs, quantum dots demonstrate reduced sensitivity to threading dislocations and other crystalline defects as well as to sidewall recombination owing to a suppressed lateral transport of charge carriers which prevents their diffusion towards non-radiate recombination centers. The QD laser structure was directly grown by MBE on Si (001) substrate with 4° offcut to the [011] plane. QD microlasers were tested at room temperature in CW regime with a DC current varied from 0 to 50 mA and at elevated temperatures under CW and pulsed excitation (0.5-µs-long injection pulses with 10 kHz repetition rate). The InAs/InGaAs QDs active region provides the wavelengths in the 1.32–1.35 µm spectral interval. At room temperature, lasing is achieved in microlasers with diameters of 14-30 µm with a minimal threshold current density of 600 A/cm2 (compare with that of 427 A/cm2 in edge-emitting laser). The threshold current density and specific thermal resistance of 0.004 °C×cm^2/mW are comparable to those of high-quality QD microdisk lasers on GaAs substrates. Lasing wavelength demonstrates low sensitivity to current-induced self-heating. Lasing is single mode (SMSR 20 dB) with a dominant mode linewidth as narrow as 30 pm. Under CW excitation lasing sustains up to 60 °C in microlasers with diameter of 30 µm. Because of self-heating, an actual temperature of the active region is close to 100°C. Under pulsed excitation, the maximal lasing temperature is 110°C. To our best knowledge, these are the smallest microlasers on silicon operating at such elevated temperatures ever reported. Up to 90°C lasing proceeds on the ground state optical transition of QDs with wavelength about 1.35 µm. At higher temperatures, lasing wavelength jumps to the excited state transition.
The ability to create metamorphic hybrid heterostructure of 1300 nm spectral band VCSEL is demonstrated. Metamorphic semiconductor part of heterostructure with GaAs/AlGaAs DBR and InAlGaAs/InGaAs QW active region has been grown by molecular beam epitaxy (MBE) on GaAs (100). Top dielectric SiO2/Ta2O5 DBR is made by the magnetron sputtering method. VCSEL has been studied under optical pumping (λ = 532 nm, diameter of the focused laser beam of ~ 1 μm) by using micro-PL setup in the range of optical pump power 0 – 70 mW at room temperature. Presence of the superlinear PL intensity growth having threshold-like dependence of PL integral intensity together with the PL peaks narrowing and mode composition modification with the pumping density increasing could be attributed to lasing behavior of the structure. Obtained results indicate the opportunity to use metamorphic growth on GaAs substrates for the 1300 nm range VCSEL manufacturing.
In this work, electrically-injected microdisk lasers with diameter varied from 15 to 31μm based on an InAs/InGaAs QD
active region have been fabricated and tested in continuous wave regime. At room temperature, lasing is achieved at
wavelength around 1.26…1.27 μm with threshold current density about 900 A/cm2. Specific series resistance is
estimated to be about 10-4 Ohm•cm2. The lasers were tested at elevated temperatures. Lasing is achieved up to 100°C
with threshold current of 13.8mA and lasing wavelength of 1304nm in device with 31μm diameter. To the best of our
knowledge, this is the highest CW lasing temperature and the longest lasing wavelength ever reported for injection QD
microdisk/microring lasers on GaAs substrates. Emission spectrum demonstrates single-mode lasing with side mode
suppression ration of 24dB and dominant mode linewidth of 35pm. The far field radiation pattern demonstrates two
narrow maxima off the disk plane. A combination of device characteristics achieved (low threshold, long wavelength,
operation at elevated temperatures) makes them suitable for application in future optoelectronic circuits for optical
interconnect systems.
Conference Committee Involvement (1)
International School and Conference "Saint-Petersburg OPEN 2015"
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.