An innovative undergraduate level Nanofabrication course with a focus on photonics is proposed. This course challenges the definition of what constitutes an undergraduate class in a research-intensive university. Namely, instructor and teaching assistants (TAs) propose a moderately challenging graduate-level research project that has not been previously published; challenge the Team, consisting of the students, with the TAs and instructor, to research during the class, as a Team; have the Team collaborate on writing a research paper with the goal of submitting it to an archival journal. Through this process, students learn the course content and experience how research is conducted.
Novel sub-wavelength silicon photonic waveguides for label-free sensors are demonstrated in this article. We use silicon-on-insulator (SOI) waveguides that consist of sub-wavelength grating (SWG) structures, where the waveguides are made of small silicon arrays (180 × 180 nm2 rectangles with 60 nm gaps). They are used to form microring and Bragg grating resonators which measure the change of refractive index by monitoring the resonant wavelength shift. Due to the high surface contact area and low optical confinement of the proposed waveguide, the sensitivity (both bulk and surface) can be significantly increased. The bulk sensitivity of 580 nm/RIU for the microring and 610 nm/RIU for the Bragg grating are better than other recently published resonator sensors. Moreover, a standard biological sandwich assay demonstrates an enhanced surface sensitivity of 2050 pm/nm for both devices. Theoretical models and experimental results are investigated, indicating the predominant losses are from the water absorption at 1550 nm and scattering by sidewall roughness.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.