We present a few-cycle, actively carrier-enveloped phase stabilized OPCPA system operating at a central wavelength of 900 nm on a compact footprint of only 120 cm x 80 cm including the Yb:YAG pump system. The system delivers sub 9 fs pulses with pulse energies exceeding 30 µJ at a 200 kHz repetition rate. The layout allows the compactification of modern attosecond spectroscopy setups and increase stability.
Solid-state high harmonic generation (SSHHG) is a relatively recent non-destructive technique that offers new insight into the dynamics of strong-field light-matter interaction. At the same time, SSHHG holds promise for being a viable route to engineering innovative, flexible, compact sources with emission in the extreme- ultraviolet (XUV) spectral range. The technique has already been shown to yield XUV light, albeit with low conversion efficiencies, as compared to the more traditional gas-based high harmonic generation (HHG) sources. In this work we demonstrate that a non-collinear, multicolor SSHHG arrangement leads to spectra in the XUV with a high degree of tunability, and a considerable enhancement of the output flux. The observed behaviour can be understood in terms of perturbative optical wave mixing over more than one order of magnitude of the drive intensity. In addition, a model based on the recently-introduced injection current allows accurate predictions over the entire experimental range.
High power and high repetition rate femtosecond lasers at 1.45–2.40 μm wavelength are critical for many applications in the physical, chemical, and biological sciences, such as microchip electron accelerators and soft-X-ray coherent diffractive imaging. Previously, such systems have been realized by optical parametric amplification from Ti:Sapphire lasers at 800 nm with limited power levels. A novel optical parametric chirped-pulse amplifier (OPCPA), pumped by high-power Yb-doped solid state laser, and combined with bulk crystal white-lightgeneration seeding (WLG) is demonstrated here. The laser system features tunable and broadband operation in the 1.45–2.40 μm spectral range, requiring no complex cooling with a compact footprint. Such systems have recently become commercially available from Class 5 Photonics and allow for scalability up to millijoule pulse energies at 100 W average power.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.