Arterial Spin Labeling (ASL) is a popular non-invasive neuroimaging technique to use MRI for quantitatively Cerebral Blood Flow (CBF) mapping. However, ASL usually suffers from poor signal quality and repeated measurements are typically acquired to improve signal quality through averaging at the cost of long scan time. In this work, a deep learning algorithm is proposed to leverage both convolutional neural network (CNN) based image enhancement as well as combining complementary/mutual information from multiple tissue contrasts in ASL acquisition. Both quantitative and qualitative evaluation demonstrate the performance and stability of the proposed algorithm and its superiority over conventional denoising algorithms and standard deep learning based denoising. The results demonstrate the feasibility of efficient and high-quality ASL measurements from average-free fast acquisition which will enable broader clinical application of ASL.
Positron emission tomography (PET) is a widely used molecular imaging modality for various clinical applications. With Magnetic Resonance Imaging (MRI) providing anatomical information, simultaneous PET/MR reduces the radiation risk. Both improved hardware and algorithms have been developed to further reduce the amount of radiotracer dosage, but these methods are not yet applied to very low dose. Here, we propose a Deep Learning based method to enable ultra-low-dose PET denoising with multi-contrast information from simultaneous MRI. Methods:The method is implemented to denoise 18F-fluorodeoxyglucose (FDG) brain PET images from low-dose images with 200-fold dose reduction through undersampling, and evaluated for glioblastoma (GBM) patients. Comprehensive quantitative and qualitative evaluations were conducted to verify the performance and clinical applicability of the proposed method, including quantitative accuracy evaluation, visual quality evaluation, reader study with manual tumor segmentation to evaluate the diagnostic quality. Results:The results demonstrate that the proposed method achieves superior results in performance and efficiency comparing with the state-of-art denoising methods. Conclusion:Though reconstructed from scans with only 0.5% of the standard dose, the denoised ultra-low-dose PET images deliver similar visual quality and diagnostic information as the standard-dose PET images. By combining PET and MR information, the proposed Deep Learning based method improves image quality of ultra-low-dose PET, preserves diagnostic quality, and potentially enables much safer, faster, and more cost-effective PET/MR studies.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.