NASA’s James Webb Space Telescope (JWST) is a 6.5m diameter, segmented, deployable telescope for cryogenic IR space astronomy. The JWST Observatory architecture includes the Primary Mirror Backplane Support Structure (PMBSS) and Integrated Science Instrument Module (ISIM) Electronics Compartment (IEC) which is designed to integrate to the spacecraft bus via six cup/cone interfaces. Prior to integration to the spacecraft bus, the JWST observatory must undergo environmental testing, handling, and transportation. Multiple fixtures were developed to support these tasks including the vibration fixture and handling and integration fixture (HIF). This work reports on the development of the nominal alignment of the six interfaces and metrology operations performed for the JWST observatory to safely integrate them for successful environmental testing.
NASA’s James Webb Space Telescope (JWST) is a 6.6m diameter, segmented, deployable telescope for cryogenic IR space astronomy. The JWST Observatory architecture includes the Optical Telescope Element (OTE) and the Integrated Science Instrument Module (ISIM) element which contains four science instruments (SIs). Prior to integration with the spacecraft, the JWST optical assembly is put through rigorous launch condition environmental testing. This work reports on the metrology operations conducted to measure changes in subassembly alignment, including the primary mirror segments, the secondary mirror to its support structure, the tertiary mirror assembly to the backplane of the telescope and ISIM.
The NASA Goddard Space Flight Center (GSFC) and its partners have broad experience in the alignment of flight optical instruments and spacecraft structures. Over decades, GSFC developed alignment capabilities and techniques for a variety of optical and aerospace applications. In this paper, we provide an overview of a subset of the capabilities and techniques used on several recent projects in a “toolbox” format. We discuss a range of applications, from small-scale optical alignment of sensors to mirror and bench examples that make use of various large-volume metrology techniques. We also discuss instruments and analytical tools.
NASA’s James Webb Space Telescope (JWST) is a 6.6m diameter, segmented, deployable telescope for cryogenic IR space astronomy. The JWST Observatory architecture includes the Optical Telescope Element (OTE) and the Integrated Science Instrument Module (ISIM) element which contains four science instruments (SI), including a guider. The SIs and guider are mounted to a composite metering structure with outer envelope approximate measurements of 2.2x2.2x1.7m. These SI units are integrated to the ISIM structure and optically tested at NASA Goddard Space Flight Center as an instrument suite using an Optical telescope element SIMulator (OSIM). OSIM is a high-fidelity, cryogenic JWST simulator that features a ~1.5m diameter powered mirror. The SIs are aligned to the flight structure’s coordinate system under ambient, clean room conditions using opto-mechanical metrology and customized interfaces. OSIM is aligned to the ISIM mechanical coordinate system at the cryogenic operating temperature via internal mechanisms and feedback from alignment sensors and metrology in six degrees of freedom. SI performance, including focus, pupil shear, pupil roll, boresight, wavefront error, and image quality, is evaluated at the operating temperature using OSIM. This work reports on the as-run ambient assembly and ambient alignment steps for the flight ISIM, including SI interface fixtures and customization and kinematic mount adjustment. The ISIM alignment plan consists of multiple steps to meet the “absolute” alignment requirements of the SIs and OSIM to the flight coordinate system. In this paper, we focus on key aspects of absolute, optical-mechanical alignment. We discuss various metrology and alignment techniques. In addition, we summarize our approach for dealing with and the results of ground-test factors, such as gravity.
KEYWORDS: Thermal modeling, Performance modeling, James Webb Space Telescope, Thermography, Instrument modeling, Systems modeling, Motion models, Temperature metrology, Finite element methods, Error analysis
The James Webb Space Telescope includes the Integrated Science Instrument Module (ISIM) element that contains four science instruments (SI) including a Guider. We performed extensive structural, thermal, and optical performance (STOP) modeling in support of all phases of ISIM development. In this paper, we focus on modeling and results associated with test and verification. ISIM’s test program is bound by ground environments, mostly notably the 1g and test chamber thermal environments. This paper describes STOP modeling used to predict ISIM system performance in 0g and at various on-orbit temperature environments. The predictions are used to project results obtained during testing to on-orbit performance.
KEYWORDS: Lawrencium, Silicon, Optical alignment, Virtual colonoscopy, James Webb Space Telescope, Metrology, Space telescopes, Telescopes, Finite element methods, Mirrors
While efforts within the optics community focus on the development of high-quality systems and data products, comparatively little attention is paid to their use. Our standards for verification and validation are high; but in some user domains, standards are either lax or do not exist at all. In forensic imagery analysis, for example, standards exist to judge image quality, but do not exist to judge the quality of an analysis. In litigation, a high quality analysis is by default the one performed by the victorious attorney’s expert. This paper argues for the need to extend quality standards into the domain of imagery analysis, which is expected to increase in national visibility and significance with the increasing deployment of unmanned aerial vehicle—UAV, or “drone”—sensors in the continental U. S.. It argues that like a good radiometric calibration, made as independent of the calibrated instrument as possible, a good analysis should be subject to standards the most basic of which is the separation of issues of scientific fact from analysis results.
We describe the use of LIDAR, or "laser radar," (LR) as a fast, accurate, and non-contact tool for the
measurement of the radius of curvature (RoC) of large mirrors. We report the results of a demonstration of
this concept using a commercial laser radar system. We measured the RoC of a 1.4m x 1m spherical mirror
with a nominal RoC of 4.6m with a manufacturing tolerance of 4600mm +/- 6mm. The prescription of the
mirror is related to its role as ground support equipment used in the test of part of the James Webb Space
Telescope (JWST). The RoC of such a large mirror is not easily measured without contacting the surface.
From a position near the center of curvature of the mirror, the LIDAR scanned the mirror surface, sampling it
with 1 point per 3.5 cm2. The measurement consisted of 3983 points and lasted only a few minutes. The laser
radar uses the LIDAR signal to provide range, and encoder information from angular azimuth and elevation
rotation stages provide the spherical coordinates of a given point. A best-fit to a sphere of the measured points
was performed. The resulting RoC was within 20 ppm of the nominal RoC, also showing good agreement
with the results of a laser tracker-based, contact metrology. This paper also discusses parameters such as test
alignment, scan density, and optical surface type, as well as future possible application for full prescription
characterization of aspherical mirrors, including radius, conic, off-axis distance, and aperture.
The James Webb Space Telescope is a large infrared observatory with a segmented primary mirror, part of the
Optical Telescope Element (OTE), and four science instruments supported by the Integrated Science Instrument Module
(ISIM). We present the calibration plan for the ISIM Test Platform (ITP) which replicates the ISIM-to-OTE interface: to
calibrate the location and orientation of metrology features at ambient and cryogenic environmental conditions, to verify
that ITP behavior (deflection under load, warm-to-cold alignment shift) can be modeled, predicted, and tested, to prove
that the ITP is stable (upon repeated cryogenic cycles, and after loading and handling), and to calibrate the relationship
between the Master Alignment Target Fixture and the ITP at ambient and cryogenic conditions.
KEYWORDS: Cameras, Cryogenics, Photogrammetry, James Webb Space Telescope, Distortion, Error analysis, Metrology, Calibration, Received signal strength, Optical alignment
The alignment philosophy of the James Webb Space Telescope (JWST) Integrated Science Instrument
Module (ISIM) is such that the cryogenic changes in the alignment of the science instruments (SIs) and
telescope-related interfaces are captured in an alignment error budget. The SIs are aligned to the structure's
coordinate system under ambient, clean room conditions using laser tracker and theodolite metrology. The
ISIM structure is thermally cycled and temperature-induced mechanical and structural changes are
concurrently measured to ensure they are within the predicted boundaries.
We report on the ISIM photogrammetry system and its role in the cryogenic verification of the ISIM
structure. We describe the cryogenic metrology error budget and the analysis and testing that was
performed on the ISIM mockup, a full scale aluminum model of the ISIM structure, to ensure that the
system design allows the metrology goals to be met, including measurement repeatability and distortion
introduced from the camera canister windows.
The James Webb Space Telescope (JWST) is an infrared space telescope scheduled for launch in 2013. JWST has a 6.5 meter diameter deployable and segmented primary mirror, a deployable secondary mirror, and a deployable sun-shade. The optical train of JWST consists of the Optical Telescope Element (OTE), and the Integrated Science Instrument Module (ISIM), which contains four science instruments. When the four science instruments are integrated to ISIM at NASA Goddard Space Flight Center, the structure becomes the ISIM Element. The ISIM Element is assembled at ambient cleanroom conditions using theodolite, photogrammetry, and laser tracker metrology, but it operates at cryogenic temperature, and temperature-induced mechanical and alignment changes are measured using photogrammetry. The OTE simulator (OSIM) is a high-fidelity, cryogenic, telescope simulator that features a ~1.5 meter diameter powered mirror. OSIM is used to test the optical performance of the science instruments in the ISIM Element, including focus, pupil shear, and wavefront error. OSIM is aligned to the flight coordinate system in six degrees of freedom via OSIM-internal cryogenic mechanisms and feedback from alignment sensors. We highlight optical metrology methods, introduce the ISIM and the Science Instruments, describe the ambient alignment and test plan, the cryogenic test plan, and verification of optical performance of the ISIM Element in cryo-vacuum environment.
The Refractive Aberrated Simulator/Hubble Opto-Mechanical Simulator (RAS/HOMS) test facility previously located at Ball Aerospace Division in Boulder (BASD), CO will be relocated to NASA Goddard Space Flight Center (GSFC).
This paper will highlight the metrology and test methods used to characterize the facility prior to disassembly as well as assemble and align the facility once it has been moved to GSFC.
The HOMS portion of the facility simulates the mechanical latch mechanisms that hold an axial instrument in alignment with the Hubble Space Telescope (HST) optical path. Two sets of three latches must be aligned in position on the HOMS structure to match that of the two axial bays in HST.
The RAS portion of the facility is a refractive optical system that simulates the aberrations in HST's optical telescope assembly. Each mount and lens must be properly aligned within the RAS system in order to accurately simulate the aberrations of HST's optical system. The optical axis of the RAS system must be brought into alignment with the optical axis of HOMS system.
Photogrammetry, theodolite auto-collimation data, theodolite coordinate data, and laser tracker coordinate data were used to characterize the system prior to disassembly. The same data will be used to bring the RAS/HOMS system as close to the original alignment as possible.
This paper presents some lessons learned from simulating the operation of a command center in distributed interactive simulations (DIS). We present the design of the Booz Allen Command Center Systems Interface (C2SI) in terms of its functional architecture as well as the technologies used in its implementation. We discuss the design of the distributed component interfaces based on cooperating software agent pairs. We discuss aspects of several issues in simulating command and control systems in the ADS/DIS environment, namely, interoperation of constructive and virtual simulation, situation awareness, communication with adjacent C2 entities, control of subordinate entities and external sensors, terrain/environmental data management, and data collection for after-action reporting.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.