The Integrated Optical System (IOS) is an extreme adaptive optics system designed for NASA’s Laser Com- munication Relay Demonstration mission. There is a great deal of overlap between the requirements for laser communication AO and high-contrast exoplanet imaging AO systems. Both require very high Strehl ratios with narrow fields of view. This overlap allows the IOS to serve as a testbed and technology demonstrator for astronomical extreme adaptive optics systems.
There are several example technologies from the IOS that are already making the transition to astronomical AO systems. The first is that the real time controller based on Direct Memory Access transfer between the WFS camera link frame-grabber and a DSP board is being reused on the upgrade to PALM-3000 AO system at Palomar Observatory. This enables the system to minimize latency by bypassing the CPU and its inherent timing jitter. Technologies like this will be crucial to enabling high contrast imaging on the next generation of extremely large telescopes. In addition, the IOS measures Fried’s parameter from wavefraont measures in near real time. This technology has already been deployed to PALM-3000. The main function of Laser Communication AO systems is to couple the incoming light into single mode fiber. This is the same configuration that will be used by AO coupled radial velocity spectrographs.
The adaptive optics system is a woofer/tweeter design, with one deformable mirror correcting for low spatial frequencies with large amplitude and a second deformable mirror correcting for high spatial frequencies with small amplitude. The system uses a Shack-Hartmann wavefront sensor. The system has achieved first light and is undergoing commissioning. We will present an overview of the system design and initial performance.
KEYWORDS: Adaptive optics, Laser communications, Telecommunications, Relays, Space telescopes, Digital signal processing, Information operations, Telescopes, Cameras, Satellites
The Laser Communication Relay Demonstration is NASA’s multi-year demonstration of laser communication to a geosynchronous satellite. We are currently assembling the optical system for the first of the two baseline ground stations. The optical system consists of an adaptive optics system, the transmit system and a camera for target acquisition. The adaptive optics system is responsible for compensating the downlink beam for atmospheric turbulence and coupling it into the modem’s single mode fiber. The adaptive optics system is a woofer/tweeter design, with one deformable mirror correcting for low spatial frequencies with large amplitude and a second deformable mirror correcting for high spatial frequencies with small amplitude. The system uses a Shack- Hartmann wavefront sensor. The transmit system relays four beacon beams and one communication laser to the telescope for propagation to the space terminal. Both the uplink and downlink beams are centered at 1.55 microns. We present an overview of the design of the system as well as performance predictions including time series of coupling efficiency and expected uplink beam quality.
Harrison Herzog, Jacob Segal, Jeremy Smith, Richard Bates, Jacob Calis, Alyssa De La Torre, Dae Wook Kim, Joni Mici, Jorge Mireles, David Stubbs, Ryan Wicker
Direct Metal Laser Sintering (DMLS) and Electron Beam Melting (EBM) 3D printing technologies were utilized to create lightweight, optical grade mirrors out of AlSi10Mg aluminum and Ti6Al4V titanium alloys at the University of Arizona in Tucson. The mirror prototypes were polished to meet the λ/20 RMS and λ/4 P-V surface figure requirements. The intent of this project was to design topologically optimized mirrors that had a high specific stiffness and low surface displacement. Two models were designed using Altair Inspire software, and the mirrors had to endure the polishing process with the necessary stiffness to eliminate print-through. Mitigating porosity of the 3D printed mirror blanks was a challenge in the face of reconciling new printing technologies with traditional optical polishing methods. The prototypes underwent Hot Isostatic Press (HIP) and heat treatment to improve density, eliminate porosity, and relieve internal stresses. Metal 3D printing allows for nearly unlimited topological constraints on design and virtually eliminates the need for a machine shop when creating an optical quality mirror. This research can lead to an increase in mirror mounting support complexity in the manufacturing of lightweight mirrors and improve overall process efficiency. The project aspired to have many future applications of light weighted 3D printed mirrors, such as spaceflight. This paper covers the design/fab/polish/test of 3D printed mirrors, thermal/structural finite element analysis, and results.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.