POET is a proposed Canadian Microsatellite mission to detect new, potentially habitable, rocky planets transiting low-mass stars, and to characterize the atmospheres of known transitioning extrasolar planets. The allreflective telescope offers simultaneous imaging in the u-band (300-400 nm), VNIR (400-900 nm) and SWIR (900-1700 nm) through a 20 cm aperture. The optical telescope assembly (OTA) has been designed and build with support from the Space Technology Development Program (STDP) of the Canadian Space Agency. The prototype underwent complete integration and optical properties testing including ensquared energy, Modulation Transfer Function, distortion, and Effective Focal Length measurement. Results show that the design is compliant with expected performances at ambient temperature. A Thermal-Vacuum Chamber campaign over the range of operation temperature has been designed to verify the OTA’s performance from -20 °C to 20°C. This enables the investigation of image quality stability in a sub-set of environmental conditions, increasing the OTA’s Technology Readiness Level. POET is a collaboration between Bishop’s University, Western University, ABB and SFL-UTIAS.
The Pandora SmallSat is a NASA flight project designed to study the atmospheres of exoplanets. Transmission spectroscopy of transiting exoplanets provides our best opportunity to identify the makeup of planetary atmospheres in the coming decade, and is a key science driver for HST and JWST. Stellar photospheric inhomogeneity due to star spots, however, has been shown to contaminate the observed spectra in these high-precision measurements. Pandora will address the problem of stellar contamination by collecting long-duration photometric observations sampled over a stellar rotation period with a visible-light channel and simultaneous spectra with a near-IR channel. These simultaneous multiwavelength observations will constrain star spot covering fractions of exoplanet host stars, enabling star and planet signals to be disentangled in transmission spectra to then reliably determine exoplanet atmosphere compositions. Pandora will observe exoplanets with sizes ranging from Earthsize to Jupiter-size and host stars spanning mid-K to late-M spectral types. Pandora was selected in early 2021 as part of NASA’s inaugural Astrophysics Pioneers Program. Herein, we present an overview of the mission, including the science objectives, operations, the observatory, science planning, and upcoming milestones as we prepare for launch readiness in 2025.
The first generation of ELT instruments includes an optical-infrared high resolution spectrograph, indicated as ELT-HIRES and recently christened ANDES (ArmazoNes high Dispersion Echelle Spectrograph). ANDES consists of three fibre-fed spectrographs ([U]BV, RIZ, YJH) providing a spectral resolution of ∼100,000 with a minimum simultaneous wavelength coverage of 0.4-1.8 μm with the goal of extending it to 0.35-2.4 μm with the addition of an U arm to the BV spectrograph and a separate K band spectrograph. It operates both in seeing- and diffraction-limited conditions and the fibre-feeding allows several, interchangeable observing modes including a single conjugated adaptive optics module and a small diffraction-limited integral field unit in the NIR. Modularity and fibre-feeding allows ANDES to be placed partly on the ELT Nasmyth platform and partly in the Coudé room. ANDES has a wide range of groundbreaking science cases spanning nearly all areas of research in astrophysics and even fundamental physics. Among the top science cases there are the detection of biosignatures from exoplanet atmospheres, finding the fingerprints of the first generation of stars, tests on the stability of Nature’s fundamental couplings, and the direct detection of the cosmic acceleration. The ANDES project is carried forward by a large international consortium, composed of 35 Institutes from 13 countries, forming a team of almost 300 scientists and engineers which include the majority of the scientific and technical expertise in the field that can be found in ESO member states.
VROOMM is an optical (360nm - 930 nm) high-resolution échelle spectrograph currently in its design phase for the 1.6-meter telescope of the Observatoire du Mont-Mégantic (OMM) in Québec, Canada. Specifically designed for precision radial velocity (RV) measurements of relatively faint stars, the instrument features a 4K photon-counting EMCCD, octagonal fibers, and a double scrambler, all housed in a thermally stabilized vacuum cryostat. Designed for a resolution exceeding 80 000, the spectrograph aims to provide RV measurements with precision tailored for specific cases. The first scenario involves using the EMCCD like a normal CCD without electron amplification, enabling follow-up observations of terrestrial planets, super-Earths, and mini-Neptunes orbiting relatively bright M dwarfs. The second case employs photon counting, utilizing the electron-multiplying mode of the EMCCD to achieve 100−200 m/s velocimetry through cross-correlation of extremely low signal-to-noise ratio data. This innovative approach opens up observations of stars as faint as rsdss=19-20, an unexplored realm in RV studies. The main science niche for this mode is the confirmation of brown dwarfs orbiting cool stars and stellar dynamics within open clusters and young associations. Typically observed at low resolution, these targets face challenges in achieving RV precision better than a few km/s. VROOMM’s photon counting capability presents a novel solution for obtaining high-precision radial velocities in this challenging regime. We detail the unique features and capabilities of each operation mode, emphasizing the novel contributions of VROOMM in advancing precision RV measurements for a diverse range of exoplanet systems.
The first generation of ELT instruments includes an optical-infrared high resolution spectrograph, indicated as ELT-HIRES and recently christened ANDES (ArmazoNes high Dispersion Echelle Spectrograph). ANDES consists of three fibre-fed spectrographs (UBV, RIZ, YJH) providing a spectral resolution of ∼100,000 with a minimum simultaneous wavelength coverage of 0.4-1.8 µm with the goal of extending it to 0.35-2.4 µm with the addition of a K band spectrograph. It operates both in seeing- and diffraction-limited conditions and the fibre-feeding allows several, interchangeable observing modes including a single conjugated adaptive optics module and a small diffraction-limited integral field unit in the NIR. Its modularity will ensure that ANDES can be placed entirely on the ELT Nasmyth platform, if enough mass and volume is available, or partly in the Coudé room. ANDES has a wide range of groundbreaking science cases spanning nearly all areas of research in astrophysics and even fundamental physics. Among the top science cases there are the detection of biosignatures from exoplanet atmospheres, finding the fingerprints of the first generation of stars, tests on the stability of Nature’s fundamental couplings, and the direct detection of the cosmic acceleration. The ANDES project is carried forward by a large international consortium, composed of 35 Institutes from 13 countries, forming a team of more than 200 scientists and engineers which represent the majority of the scientific and technical expertise in the field among ESO member states.
KEYWORDS: James Webb Space Telescope, Near infrared, Atmospheric modeling, Point spread functions, Stars, Planets, Exoplanets, Atmospheric sciences, Sensors, Spectroscopy, Modeling and simulation
Pandora is a SmallSat mission, designed to study the atmospheres of exoplanets using transmission spectroscopy and to investigate the impact that stellar contamination and variability has on observing the spectra of these worlds. Pandora’s initial science operation lifetime is one year, so optimizing the science return is critical. Here we present two tools created to assist in the design process. The first is a 2-D spectrum simulator being developed to help refine target selection, optimize observation strategies, and assist in the creation of a data reduction pipeline. The second is a pseudo-retrieval framework that provides a quantifiable method for comparing potential targets against a handful of exoplanetary atmospheric parameters important to the Pandora mission. Preliminary results show Pandora will place tighter constraints on atmospheric properties like water abundance compared to HST and answering its mission objectives will help to inform targets for missions like JWST.
POET is a proposed Canadian Microsatellite mission designed to characterize and discover transiting exoplanets. A 20-cm all-reflective telescope will feed a trio of detectors to obtain simultaneous, high duty-cycle, photometry in the u (300-400 nm), Visible Near-Infrared (VNIR) (400-900 nm) and Short Wave Infrared (SWIR (900- 1700 nm) bands to make precision measurements of exoplanet transits for atmospheric characterization and to detect transiting Earth-sized planets. POET was selected as a high priority for a Microsatellite mission by the Canadian community as part of the CASCA Long Range Plan 2020. Advancement of the payload concept and technology development for the optical telescope assembly (OTA) are currently being carried out through the Space Technology Development Program of the Canadian Space Agency. POET is a collaboration between Bishop’s University, Western University, ABB and SFL-UTIAS.
Pandora is a low-cost space telescope designed to measure the composition of distant transiting planets. The Pandora observatory is designed with the capability of measuring precision photometry simultaneously with nearinfrared spectroscopy, enabling scientists to disentangle stellar activity from the subtle signature of a planetary atmosphere. The broad-wavelength coverage will provide constraints on the spot and faculae covering fractions of low-mass exoplanet host stars and the impact of these active regions on exoplanetary transmission spectra. Pandora will subsequently identify exoplanets with hydrogen- or water-dominated atmospheres, and robustly determine which planets are covered by clouds and hazes. Pandora observations will also contribute to the study of transit timing variations and phase curve photometry. With a launch readiness date of early-2025, the Pandora mission represents a new class of low-cost space missions that will achieve out-of-this-world science.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.