Publisher’s Note: This paper, originally published on 20 September 2020, was replaced with a corrected/revised version on 11 November 2020. If you downloaded the original PDF but are unable to access the revision, please contact SPIE Digital Library Customer Service for assistance.
Secure optical communications networks are a functional requirement for many military, government, and civilian applications. Optical free space links provide security due to the small ground footprint of highly collimated laser beam patterns. Space-based optical communications provide an additional layer of security due to dynamic angular tracking requirements and remote orbiting infrastructure. The addition of Quantum Key Distribution (QKD) adds a third layer of safety through the use of physically unbreakable keys. The QEYSSat mission is scheduled to launch in 2022. This mission will carry a primary QKD science payload and a secondary high-speed optical communications demonstration payload. The QEYSSat secondary communications payload (QP2) is the latest space-based optical communications terminal designed to be amenable to low cost mass production methods, meeting the price targets of many planned low-earth-orbit optical communications constellations. The successful demonstration of both technologies on a single micro-satellite platform demonstrates the key technologies necessary to enable next generation high speed secure communications networks. In this paper we present an overview of the QEYSSAT optical payloads and describe secure architectures for QKD-enabled optical communications network applications.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.