The NASA Plankton, Aerosol, Cloud, ocean Ecosystem (PACE) mission launched from Kennedy Space Center in the early morning of February 8, 2024. Just 63 days later, data from NASA’s newest Earth-observing satellite became available to the public. These data will extend and improve upon NASA’s 20+ years of global satellite observation of our living oceans, atmospheric aerosols, and cloud and initiate an advanced set of climate-relevant data records. Ultimately, PACE is the first mission to provide daily, global measurements that will enable prediction of the “boom-bust” cycle of fisheries, the appearance of harmful algae, and other factors that affect commercial and recreational industries. PACE also observes clouds and tiny airborne particles known as aerosols that influence air quality and absorb and reflect sunlight, thus warming and cooling the atmosphere. In the months since launch and initial data release, the PACE Project pursued instrument temporal and system vicarious calibrations, executed cross-instrument comparisons, conducted performance assessments, explored synergies with other missions, and released advanced science data products. In parallel, the PACE Validation Science Team left for the field and the Post-launch Airborne eXperiment (PACE-PAX) prepared for its mission. And, most importantly, preliminary science results were realized. Here, we present a snapshot of these activities and their impacts and outcomes, encompassing the first half year of the PACE mission.
SPEXone is a compact multi-angle spectropolarimeter that measures both spectral intensity and the state of linear polarization of light scattered by aerosols in the Earth’s atmosphere at five different viewing angles simultaneously. This enables a very accurate quantification and characterization of atmospheric aerosols, helping us to better understand their effects on global climate and air quality. Building upon the success of its predecessor SPEXone, which has been launched in 2024 as part of the NASA PACE observatory, a second and improved instrument, SPEXone Second Generation, has been built within the ESA PRODEX program. Most recently, the integrated instrument underwent full on-ground characterization and calibration in ambient conditions at SRON. This contribution gives an overview of the measurements and presents preliminary results from the characterization and calibration campaign, focusing on the instrument performance. A few key performance aspects such as straylight, spatial and spectral resolution are discussed, with data from SPEXone for PACE serving as a comparison. The result of the analysis shows excellent image quality and indicates an improvement in the amount of diffuse straylight.
In February the PACE observatory was launched. Among the instruments on board is the multi viewport spectropolatimeter SPEXone. The instrument will be used for the characterisation and quantification of aerosols in the atmosphere. For the retrieval of aerosol properties it is important to observe the degree of linear polarisation and the intensity of reflected sun light from different viewing angles. Hence the need to ensure viewports are well aligned and ground pixels observed with different viewports are correctly matched. Once the aerosol properties are determined the results need to be interpreted. For the interpretation of the results knowledge of the location on Earth is required. Therefore we match the obtained images as well with other instruments (e.g. Sentinel 5).
In this presentation we explain the algorithm used to register the various images, demonstrate sub-pixel accuracy on simulated data, and finally apply the method to in flight data.
This paper presents initial results from the ESA-funded “SUPPPPRESS” project, which aims to develop highperformance liquid-crystal coronagraphs for direct imaging of Earth-like exoplanets in reflected light. The project focuses on addressing the significant challenge of polarization leakage in vector vortex coronagraphs (VVCs). We utilize newly manufactured multi-grating, liquid-crystal VVCs, consisting of a two- or three-element stack of vortex and grating patterns, to reduce this leakage to the 10−10 contrast level. We detail the experimental setups, including calibration techniques with polarization microscopes and Mueller matrix ellipsometers to enhance the direct-write accuracy of the liquid-crystal patterns. The performance testing of these coronagraph masks will be conducted on the THD2 high-contrast imaging testbed in Paris.
In this contribution, the detector-characterization results and some of the on-ground calibration plans are presented for an adjusted and improved SPEXone satellite instrument. SPEXone is a highly compact multi-angle space spectro-polarimeter developed by a Dutch consortium for the NASA PACE observatory scheduled for launch early 2024. This instrument will enable detailed characterization of the microphysical properties of fine particulate matter or aerosols in the atmosphere from low Earth orbit, which is essential for climate, ecosystem, and human-health science. A successor to the SPEXone instrument is currently being developed, with a wider swath as the main change (250 km instead of 100 km), and with several design improvements to reduce straylight. The detector firmware was adjusted to enable the required higher frame rate, and to make the readout more robust. The detector was characterized in a similar way as for PACE, though even more extensively based on lessons learned. In particular, full illumination measurements were complemented with partial illumination measurements, where parts of the detector are covered using dedicated detector masks, to investigate peculiar signal-induced offset effects that were observed only late for PACE. Additionally, direct memory measurements were performed using time-dependent illumination generated using a fast electronic shutter. Following the detector characterization, instrument-calibration preparations have started. The instrument will be fully calibrated in ambient, complemented with a highly selective set of measurements in vacuum. The approach followed will be similar to PACE, but modifications will be made to deal with the increased swath. Important improvements will be implemented to improve the data quality, such as increased number of wavelengths for straylight measurements.
The Coronagraph Instrument of the Nancy Grace Roman Space Telescope (Roman Coronagraph) will be capable of both total intensity and polarization measurements of circumstellar disks. The polarimetric performance is impacted by polarization effects introduced by all mirrors before the Wollaston prisms. In this paper, we aim to characterize these effects for the Roman Coronagraph in bands one and four using the FALCO and PROPER packages. We simulate the effect of polarization aberrations that impact the polarimetric contrast and the instrumental polarization effects to study the polarimetric accuracy. We include spacecraft rolls but leave out systematic camera noise. We find that Polarimetric Differential Imaging (PDI) improves the contrast by a factor of six. The PDI contrast of ∼ 8 × 10−11 is limited by polarized speckles from instrumental polarization effects and polarization aberrations. By injecting polarized companions with at various contrast levels and demodulating their polarimetric signal, we recover their source Stokes vector within 2%.
Aerosol quantification is of paramount importance for climate research, health and many other fields. The best method for measuring and characterizing aerosol from space is the application of a multi-angle polarimeter. A Dutch consortium has developed and delivered the so called SPEXone instrument for the NASA PACE (Plankton, Aerosol, Cloud, ocean Ecosystem) mission, to be launched early 2024. SPEXone is based on the polarization modulation of the spectrum, allowing full characterization of the state of linear polarization of the incoming light. Earth is viewed under five angles, producing ten modulated spectra, projected on a single detector. A polarimetric accuracy of 0.3% is achieved, with the instrument of about 10 dm3 volume and 10 kg mass. Based on the SPEXone design and experience, an upgraded instrument is being developed. Main change is the wider swath applied, from the 100 km swath for PACE to the present 250 km. This impacts the five telescopes, being integrated in one telescope unit. Other changes in the design are based on lessons learned, in particular the reduction and avoidance of stray light. The detector readout is adjusted for higher frame rate and more robust readout. These changes do not impact the instrument's budgets for mass, volume and power. In this paper, we will explain the principle of the SPEXone multi-angle spectropolarimeter instrument, the improvements with respect to the PACE version and its development status. The instrument can be flown as a stand-alone instrument for aerosol detection, as well as a support instrument where aerosol corrections are relevant, e.g., for high accuracy detection and quantification of methane and CO2.
In the past few years, the SPEXone instrument has been developed, tested, calibrated and delivered to the NASA PACE (Plankton Aerosol and Ocean Ecosystems) project by a Dutch consortium consisting of SRON and Airbus Defence and Space Netherlands with support from TNO. Onboard the PACE satellite, SPEXone will fly together with the Ocean Color Instrument (OCI) and the Hyper-Angular Rainbow Polarimeter 2 (HARP2). SPEXone is a compact multi-angle channeled spectropolarimeter with five viewing angles and hyperspectral imaging of a ⇠100 km swath with a spatial resolution of 4.6 ⇥ 5.4 km in the along-track and across-track directions and a spatial oversampling ratio of 2. SPEXone has a spectral range from 385 to 770 nm and a spectral resolution slightly below 2 nm. High accuracy polarimetry is achieved by implementation of the dual-beam snapshot spectral polarization modulation concept, yielding two complementary spectrally modulated hyperspectral images of the same scene from which both radiance and state of linear polarization can be extracted. This paper presents results from the characterization and on-ground calibration campaign of SPEXone and discusses the use of the L0-L1B processor to derive the calibration key data (CKD) that is required for the operational data processing. The L0-L1B data processor has been developed in such a way that the CKD derivation is fully consistent with the L0-L1B processing steps, meaning that the data from which the CKD at a certain processing step is derived has been processed using the CKD from all previous processing steps. The processing steps that have been implemented include those related to the detector characterization (dark o↵set and dark current, non-linearity, and pixel-response non-uniformity), and those related to the instrument calibration (stray light, field-of-view, line-of-sight, wavelength, radiometric and polarimetric). We will show examples of the derived CKD and their use in the processing of measurement data. We will demonstrate the performance of the polarimetric calibration by comparing SPEXone measurement results against a well characterized polarization state generator, showing di↵erences of the order of a few times 0.001 in the degree of linear polarization. In addition, we will discuss the approach for the implementation of a stray light correction algorithm that has the potential to correct di↵use stray light with a spectral intensity and possibly size variation of the kernel, and that can correct moving ghosts with a constant kernel shape.
Modern detector manufacturing allows spectral and polarimetric filters to be directly integrated on top of separate detector pixels. This enables the creation of CubeSat-sized spectro-polarimetric instruments that are not much larger than the detector and a lens. Redundancy inherent to the observed scene, offers the opportunity for sparse sampling in the form of not scanning all filters at every location. However, when there are fewer pushbroom steps than filters, data are missing in the resulting data cube. The missing, largely redundant data can be filled in with interpolation methods, often called demosaicers. The choice of filters and their precise layout influences the performance of the instrument after the demosaicing process. In these proceedings we describe a part of a design toolbox for both the filter layout and the optimum parameters for the reconstruction to a full spectropolarimetric data cube. The design tool is based on training a (neural) network and jointly updating the values of the filters and demosaicer. We optimized a filter layout by training on spectro-polarimetric remote observations of the Earth acquired by SPEX airborne. This optimised filter layout could reconstruct a validation scene from five overlapping snapshots (pushbroom steps), which would take 109 pushbroom steps when measuring with a classical layout and no reconstruction.
High accuracy multi-angle polarimetry is of crucial importance for remote sensing of aerosol properties with accuracies demanded by climate and air quality studies. In this contribution, we discuss the polarimetric calibration of the multi-angle polarimeter "SPEX airborne". SPEX airborne is a multi-angle viewing instrument providing snapshot measurements of spectral radiance and degree of linear polarization at fixed viewing angles. Radiance and polarization are measured as a continuous function of wavelength in the 400-760nm range, at nine viewing angles equally distributed over an angular range of -56° to +56°. Each viewing-angle aperture has a swath of 7° with an instantaneous field of view of 0.5°l° (cross- times along-track). SPEX airborne measures the degree and angle of linear polarization of scattered sunlight by means of spectral modulation. For each field of view, the instrument records two modulated spectra. Ideally, these are perfectly in anti-phase, such that the sum of the modulated spectra is modulation free and gives the spectral radiance. The state of linear polarization is derived from the scaled difference of the modulated spectra. As a result of finite image quality at the focal plane, any spectropolarimeter using spectral modulation will show different polarimetric responses for the two modulated spectra, which breaks the anti-phase symmetry. For SPEX airborne this is indeed the case, and special care is taken both in the calibration and in the data processing. Ignoring this can lead to errors both in polarimetric and radiometric measurements. It is shown however that these errors are quite small. In this contribution, we will outline the spectral modulation technique employed by SPEX airborne to measure the state of linear polarization, explain which instrumental parameters are to be determined by calibration and how they feature in the data processing chain. We discuss the polarization calibration setup and how polarization calibration measurements are processed into useful calibration data. Taking a Mueller matrix approach, we show how differences in polarimetric responses can be mitigated, while also other imperfections like telescope polarization are accounted for without extra calibration effort. We also present a scheme to correct for sharp features in the solar spectrum, which would otherwise mix into the modulation spectra via the finite slit-width of the spectrometer and result in polarimetric errors. The effect of telescope polarization is also discussed Polarimetric calibration of SPEX airborne is relevant for SPEXone, a compact multi-angle polarimeter that builds on SPEX airborne heritage and space-borne spectrometer heritage within the Netherlands. SPEXone has been developed for NASA's PACE mission, which has a planned launch date in 2023.
SPEXone is a multi-angle channeled spectropolarimeter that is developed by a Dutch consortium consisting of SRON and Airbus Defence and Space Netherlands with support from TNO. SPEXone will fly together with the Ocean Color Instrument (OCI) and the Hyper-Angular Rainbow Polarimeter-2 (HARP-2) on the NASA Plankton, Aerosol, Clouds and ocean Ecosystem (PACE) mission, which has a notional launch in 2023. SPEXone will deliver high quality hyperspectral multi-angle radiance and polarization products that, together with products from OCI and HARP2, enable unprecedented aerosol and cloud characterization from space. SPEXone employs dual beam spectral polarization modulation, in which the state of linear polarization is encoded in a spectrum as a periodic variation of the intensity. This technique enables high polarimetric accuracies in operational environments, since it provides snapshot acquisition of both radiance and polarization without moving parts. SPEXone has five viewing angles that are realized using a novel three-mirror segmented telescope assembly. The telescope focuses light captured by the five viewing angles onto a single image plane consisting of five stacked sub-slits. This multi-slit forms the entrance slit of a reflective grating spectrometer that consists of freeform mirrors and an order-sorting filter close to the focal plane, yielding an intrinsic spectral resolution of 2 nm and 5.4 km spatial resolution across the 100 km swath. The spectrometer re-images two spectral images per viewing angle following a dual beam spectral polarization modulation implementation. In this contribution, the optical performance of the telescope and spectrometer will be presented by means of star stimulus measurements at the slit plane and at the spectrometer focal plane. Measurements of the optical spot quality and preliminary measurements of stray light are compared with the optical design and with stray light simulations. We find that the measured optical performance of the telescope and spectrometer is better than modelled, showing higher resolution and lower slit keystone, thereby meeting all spatial and spectral resolution requirements. Also, preliminary stray light results indicate a higher diffuse but lower ghost contribution to the total stray light, which is in general beneficial for implementing stray light correction, which will enhance the polarimetric accuracy in inhomogeneous scenes.
This contribution presents the on-ground characterization and video chain development of the CMOS detector implemented in SPEXone, the five-angle space spectro-polarimeter for the NASA PACE observatory scheduled for launch in 2023. SPEXone is a Dutch compact payload contribution developed in a partnership between SRON and ADSN, and supported by TNO. Making use of spectral modulation, this polarimeter will enable in-depth and global characterization of the microphysical properties of fine particulate matter or aerosols in the atmosphere from low Earth orbit. In SPEXone, the spectrally modulated images are captured by means of a commercial-off-the-shelf detector module (DEM) from 3Dplus, which is equipped with a CMOS image sensor with integrated front-end-electronics. Video chain developments, including DEM firmware, read-out, flexible binning and DEM interfacing through SpaceWire have been carried out in-house. Making use of the firmware, the optimal detector parameters with associated random noise, full-well capacity, and photo response non-uniformity (PRNU) of the DEM were determined by placing the DEM in front of an integrating sphere fiber-fed with a stable white light source with accurately adjustable intensity and a highly linear reference detector, providing highly uniform illumination of the whole detector area at well-known relative light intensities. The rationale behind the measurement sequences is explained, and the full-well and read noise performance under different gain settings is described. The full-well capacity of the DEM is found to be not constant, but increasing significantly with illumination intensity.
SPEXone is a compact five–angle spectropolarimeter that is being developed as a contributed payload for the NASA Plankton, Aerosol, Cloud and ocean Ecosystem (PACE) observatory, to be launched in 2022. SPEXone will provide accurate atmospheric aerosol characterization from space for climate research, as well as for light path correction in support of the main Ocean Color Instrument. SPEXone employs dual beam spectral polarization modulation, in which the state of linear polarization is encoded in a spectrum as a periodic variation of the intensity. This technique enables high polarimetric accuracies in operational environments, since it provides snapshot acquisition of both radiance and polarization without moving parts. This paper presents the polarimetric error analysis and budget for SPEXone in terms of polarimetric precision and polarimetric accuracy. We consider factors that contribute to instrumental polarization and modulation efficiency, which will be calibrated on-ground with high, but finite accuracy. The sensitivity to dynamic systematic effects in a space environment, such as degradation and ageing of components and small variations in the temperature and thermal gradients is addressed and quantified. Finally, the impact of scene dependent error sources, mainly resulting from stray light, are assessed and the total polarimetric error budget is presented. We show that SPEXone complies with the radiometric SNR requirement of 300, yielding a minimum polarimetric precision of 200 (fully polarized light) to 300 (unpolarized light) over the full spectral range for dark ocean scenes at high solar zenith angle. Assuming a stray light correction factor of 5 and considering a moderate contrast scene, the expected in-flight polarimetric accuracy of SPEXone is 1.5 · 10−3 for unpolarized scenes and 2.9 · 10−3 for highly polarized scenes, compliant with the polarimetric accuracy requirement. This performance should enable SPEXone to deliver the data quality that enables unprecedented aerosol characterization from space on the NASA PACE mission.
High accuracy multi-angle polarimetry is of crucial importance for remote sensing of aerosol and cloud properties with accuracies demanded by climate and air quality studies. In this contribution, we provide an detailed description of the multi-angle spectro-polarimetric instrument “SPEX airborne” that was developed to operate from NASA’s high altitude research aircraft ER-2. SPEX airborne delivers measurements of radiance and linear polarization at nine fixed viewports with angles equally distributed over at total angular range of 112°, at visual wavelength in the range 400-760nm. Each viewport acts as a pushbroom spectrometer with a swath of 6°. SPEX airborne participated in the recent the ACEPOL campaign in October-November 2017 when it flew together with NASA’s Research Scanning Polarimeter (RSP), the Airborne Multiangle SpectroPolarimetric Imager (AirMSPI), and the Airborne Hyper-Angular Rainbow Polarimeter (AirHARP). We compare polarimetric and radiometric measurements from SPEX airborne with those collected by RSP at four visible wavelength bands. Simultaneous measurements were made while flying over widely different scenes, under different illumination and meteorological conditions. This provided a large dynamic range in radiometric and polarimetric values. We find that the Degree of Linear Polarization (DoLP) measured by both instruments agrees well with a RMS differences of ~0.005 as the best result for 555nm. For radiance measurements excellent agreement is obtained with a RMS difference of ~4%. The in-flight comparison results provide verification of SPEX airborne’s capability to deliver high-quality data.
We have developed a 6 dm3-sized optical instrument to characterize the microphysical properties of fine particulate matter or aerosol in the Earth atmosphere from low Earth orbit. Our instrument can provide detailed and worldwide knowledge of aerosol amount, type and properties. This is important for climate and ecosystem science and human health [1, 2]. Therefore, NASA, ESA and the European Commission study the application of aerosol instruments for planned or future missions. We distinguish molecular Rayleigh scattering from aerosol Mie-type scattering by analyzing multi-angle observations of radiance and the polarization state of sun light that is scattered in the Earth atmosphere [3]. We measure across the visible wavelength spectrum and in five distinct viewing angles between -50° and +50°. Such analysis has been traditionally done by rotating polarizers and band-filters in front of an Earth observing wide-angle imager. In contrast, we adopt a means to map the linear polarization state on the spectrum using passive optical components [4]. Thereby we can characterize the full linear polarization state for a scene instantaneously. This improves the polarimetric accuracy, which is critical for aerosol characterization, enabling us to distinguish for example anthropogenic from natural aerosol types. Moreover, the absence of moving parts simplifies the instrument, and makes it more robust and reliable. We have demonstrated this method in an airborne instrument called SPEX airborne [5, 6] in the recent ACEPOL campaign together with a suite of state-of-the art and innovative active and passive aerosol sensors on the NASA ER-2 high-altitude research platform [7]. An earlier report on the SPEX development roadmap was given in [8]. In this contribution we introduce SPEXone, a compact space instrument that has a new telescope that projects the five viewing angles onto a single polarization modulation unit and the subsequent reflective spectrometer. The novel telescope allows the observation of five scenes with one spectrometer, hence the name. We describe the optical layout of the telescope, polarization modulation optics, and spectrometer and discuss the manufacturability and tolerances involved. We will also discuss the modelled instrument performance and show preliminary results from optical breadboards of the telescope and polarization modulation optics. With SPEXone we present a strong and new tool for climate research and air quality monitoring. It can be used to study the effect of atmospheric aerosol on the heating/cooling of the Earth and on air quality. Also, SPEXone can improve the accuracy of satellite measurements of greenhouse gas concentrations and ocean color that rely on molecular absorption of reflected sunlight by providing detailed knowledge of the aerosol properties, required to accurately trace the light path in presence of scattering.
SPEXone is developed in a partnership between SRON Netherlands Institute for Space Research and Airbus Defence and Space Netherlands with support from the Netherlands Organisation for Applied Scientific Research (TNO) as a Dutch contribution to the NASA PACE observatory launching in 2022.
Aerosols affect Earth’s energy level by scattering and absorbing radiation and by changing the properties of clouds. Such effects influence the precipitation patterns and lead to modifications of the global circulation systems that constitute Earth’s climate. The aerosol effects on our climate cannot be at full scale estimated due to the insufficient knowledge of their properties at a global scale. Achieving global measurement coverage requires an instrument with a large instantaneous field of view that can perform polarization measurements with high accuracy, typically better than 0.1%. Developing such an instrument can be considered as the most important challenge in polarimetric aerosol remote sensing.
Using a novel technique to measure polarization, we have designed an instrument for a low-Earth orbit, e.g. International Space Station, that can simultaneously characterize the intensity and state of linear polarization of scattered sunlight, from 400 to 800 nm and 1200 to 1600 nm, for 30 viewing directions, each with a 30° viewing angle. In this article we present the instrument’s optical design concept.
We present SPEX, the Spectropolarimeter for Planetary Exploration, which is a compact, robust and low-mass spectropolarimeter designed to operate from an orbiting or in situ platform. Its purpose is to simultaneously measure the radiance and the state (degree and angle) of linear polarization of sunlight that has been scattered in a planetary atmosphere and/or reflected by a planetary surface with high accuracy. The degree of linear polarization is extremely sensitive to the microphysical properties of atmospheric or surface particles (such as size, shape, and composition), and to the vertical distribution of atmospheric particles, such as cloud top altitudes. Measurements as those performed by SPEX are therefore crucial and often the only tool for disentangling the many parameters that describe planetary atmospheres and surfaces. SPEX uses a novel, passive method for its radiance and polarization observations that is based on a carefully selected combination of polarization optics. This method, called spectral modulation, is the modulation of the radiance spectrum in both amplitude and phase by the degree and angle of linear polarization, respectively. The polarization optics consists of an achromatic quarter-wave retarder, an athermal multiple-order retarder, and a polarizing beam splitter. We will show first results obtained with the recently developed prototype of the SPEX instrument, and present a performance analysis based on a dedicated vector radiative transport model together with a recently developed SPEX instrument simulator.
Global characterization of atmospheric aerosol in terms of the microphysical properties of the particles is essential for understanding the role aerosols in Earth climate [1]. For more accurate predictions of future climate the uncertainties of the net radiative forcing of aerosols in the Earth’s atmosphere must be reduced [2]. Essential parameters that are needed as input in climate models are not only the aerosol optical thickness (AOT), but also particle specific properties such as the aerosol mean size, the single scattering albedo (SSA) and the complex refractive index. The latter can be used to discriminate between absorbing and non-absorbing aerosol types, and between natural and anthropogenic aerosol. Classification of aerosol types is also very important for air-quality and health-related issues [3].
Remote sensing from an orbiting satellite platform is the only way to globally characterize atmospheric aerosol at a relevant timescale of ∼ 1 day [4]. One of the few methods that can be employed for measuring the microphysical properties of aerosols is to observe both radiance and degree of linear polarization of sunlight scattered in the Earth atmosphere under different viewing directions [5][6][7]. The requirement on the absolute accuracy of the degree of linear polarization PL is very stringent: the absolute error in PL must be smaller then 0.001+0.005⋅PL in order to retrieve aerosol parameters with sufficient accuracy to advance climate modelling and to enable discrimination of aerosol types based on their refractive index for air-quality studies [6][7].
In this paper we present the SPEX instrument, which is a multi-angle spectropolarimeter that can comply with the polarimetric accuracy needed for characterizing aerosols in the Earth’s atmosphere. We describe the implementation of spectral polarization modulation in a prototype instrument of SPEX and show results of ground based measurements from which aerosol microphysical properties are retrieved.
Highly accurate multi-angle polarimeters are essential for taking the next step in global characterization of atmospheric aerosol. Spectral polarization modulation enables highly accurate snapshot polarimetry and is very suitable for ground-, air- and space-based instrumentation. In this paper we present two instruments that employ this technology, the SPEX prototype and groundSPEX. We have performed ground-based measurements at the CESAR Observatory in the Netherlands with these two instruments. We compare the measured degree of linear polarization of co-located measurements, which show an rms difference of 0.005. Aerosol microphysical properties that have been retrieved from these measurements agree well with similar retrievals from AERONET measurements. Finally, we discuss the current efforts to upgrade the SPEX prototype to an autonomous instrument suitable for flying on NASA’s ER-2 high altitude aircraft.
SPEX (Spectropolarimeter for Planetary Exploration) was developed in close cooperation between scientific institutes
and space technological industries in the Netherlands. It is used for measuring microphysical properties of aerosols and
cloud particles in planetary atmospheres. SPEX utilizes a number of novel ideas. The key feature is that full linear
spectropolarimetry can be performed without the use of moving parts, using an instrument of approximately 1 liter in
volume. This is done by encoding the degree and angle of linear polarization (DoLP and AoLP) of the incoming light in
a sinusoidal modulation of the intensity spectrum.
Based on this principle, and after gaining experience from breadboard measurements using the same principle, a fully
functional prototype was constructed. The functionality and the performance of the prototype were shown by extensive
testing. The simulated results and the laboratory measurements show striking agreement.
SPEX would be a valuable addition to any mission that aims to study the composition and structure of planetary
atmospheres, for example, missions to Mars, Venus, Jupiter, Saturn and Titan. In addition, on an Earth-orbiting satellite,
SPEX could give unique information on particles in our own atmosphere.
We present the Spectropolarimeter for Planetary EXploration (SPEX), a high-accuracy linear spectropolarimeter
measuring from 400 to 800 nm (with 2 nm intensity resolution), that is compact (~ 1 liter), robust and
lightweight. This is achieved by employing the unconventional spectral polarization modulation technique, optimized
for linear polarimetry. The polarization modulator consists of an achromatic quarter-wave retarder and
a multiple-order retarder, followed by a polarizing beamsplitter, such that the incoming polarization state is
encoded as a sinusoidal modulation in the intensity spectrum, where the amplitude scales with the degree of
linear polarization, and the phase is determined by the angle of linear polarization. An optimized combination
of birefringent crystals creates an athermal multiple-order retarder, with a uniform retardance across the field
of view. Based on these specifications, SPEX is an ideal, passive remote sensing instrument for characterizing
planetary atmospheres from an orbiting, air-borne or ground-based platform. By measuring the intensity and
polarization spectra of sunlight that is scattered in the planetary atmosphere as a function of the single scattering
angle, aerosol microphysical properties (size, shape, composition), vertical distribution and optical thickness can
be derived. Such information is essential to fully understand the climate of a planet. A functional SPEX prototype
has been developed and calibrated, showing excellent agreement with end-to-end performance simulations.
Calibration tests show that the precision of the polarization measurements is at least 2 • 10-4. We performed
multi-angle spectropolarimetric measurements of the Earth's atmosphere from the ground in conjunction with
one of AERONET's sun photometers. Several applications exist for SPEX throughout the solar system, a.o. in
orbit around Mars, Jupiter and the Earth, and SPEX can also be part of a ground-based aerosol monitoring
network.
SPEX (Spectropolarimeter for Planetary EXploration) is an innovative, compact instrument for spectropolarimetry,
and in particular for detecting and characterizing aerosols in planetary atmospheres. With its ~1-liter volume
it is capable of full linear spectropolarimetry, without moving parts. The degree and angle of linear polarization
of the incoming light is encoded in a sinusoidal modulation of the intensity spectrum by an achromatic
quarter-wave retarder, an athermal multiple-order retarder and a polarizing beam-splitter in the entrance pupil.
A single intensity spectrum thus provides the spectral dependence of the degree and angle of linear polarization.
Polarimetry has proven to be an excellent tool to study microphysical properties (size, shape, composition) of
atmospheric particles. Such information is essential to better understand the weather and climate of a planet.
The current design of SPEX is tailored to study Martian dust and ice clouds from an orbiting platform: a compact
module with 9 entrance pupils to simultaneously measure intensity spectra from 400 to 800 nm, in different
directions along the flight direction (including two limb viewing directions). This way, both the intensity and
polarization scattering phase functions of dust and cloud particles within a ground pixel are sampled while flying
over it. We describe the optical and mechanical design of SPEX, and present performance simulations and initial
breadboard measurements. Several flight opportunities exist for SPEX throughout the solar system: in orbit
around Mars, Jupiter and its moons, Saturn and Titan, and the Earth.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.