Topological materials have rapidly gained interest as contenders for development of coherent, controllable terahertz emitters. Possessing Weyl nodes either at the surface or within the bulk, they host spin-polarised, helicity-dependent currents that offer possibility to control the emitted THz pulse by changing the polarization of the optical pulses generating the radiation. Here, we show that upon near-infrared excitation at oblique incidence, multi-cycle pulses are generated with a narrow bandwidth of ∼0.4 THz for cadmium arsenide bulk crystals and nanowire ensembles. Both the bandwidth and peak emission frequency of the generated THz radiation can be tuned by respectively varying the photon helicity and angle of incidence of the photoexcitation light.
Tip-based nanoscopy techniques have emerged as powerful tools for probing the exceptional optoelectronic properties of van der Waals crystals (vdW) on deeply sub-wavelength scales. Based on two sets of experiments, we demonstrate how bound electron–hole pairs – so-called excitons – can be interrogated with near-field microscopy. First, we build on terahertz nanoscopy with subcycle temporal resolution to access the separation of photo-carriers via interlayer tunneling and their subsequent recombination in transition metal dichalcogenide bilayers. By tracing the local polarizability of electron–hole pairs with evanescent terahertz fields, we reveal pronounced variations of the exciton dynamics on the nanoscale. This approach is uniquely suitable to reveal how ultrafast charge transfer processes shape functionalities in a variety of solid-state systems. Second, we image waveguide modes (WMs) in thin flakes of the biaxial vdW crystal ReS2 across a wide range of near-infrared frequencies. Resolving the dependence of the WM dispersion on the crystallographic direction, polarization of the electric field and sample thickness, enables us to quantify the anisotropic dielectric tensor of ReS2 including the elusive out-of-plane response. The excitonic absorption at ~1.5 eV induces a backbending of the dispersion and increased losses of the WMs as fully supported by numerical calculations. Thus, we provide crucial insights into the optical properties of ReS2 and explore light-matter coupling in layered, anisotropic waveguides. Our findings set the stage for probing ultrafast dynamics in biaxial vdW crystals on the nanoscale.
Optical pump-terahertz probe spectroscopy is a powerful contact-free technique for probing the electronic properties of novel nanomaterials and their response to photoexcitation. This technique can measure charge carrier transport and dynamics with sub-picosecond temporal resolution. Electrical conductivity, charge carrier lifetimes, mobilities, dopant concentrations and surface recombination velocities can be measured with high accuracy and with considerably higher throughput than achievable with traditional contact-based techniques. We describe how terahertz spectroscopy is revealing the fascinating properties and guiding the development of a number of promising semiconductor materials, with particular emphasis on III-V semiconductor nanowires and devices.
Nanowires show unique promise as nanoscale building blocks for a multitude of optoelectronic devices, ranging from solar cells to terahertz photonic devices. We will discuss the epitaxial growth of these nanowires in novel geometries and crystallographic phases, and the use of terahertz conductivity spectroscopy to guide the development of nanowire-based devices. As an example, we will focus on the development of nanowire-based polarization modulators for terahertz communications systems.
Conference Committee Involvement (2)
Functional Materials: Advances and Applications
24 October 2023 | Glasgow, United Kingdom
Workshop on Functional Material Applications: From Energy to Sensing
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.