In this work, we present the application of a nonlinear control system, based on variable structure control and sliding modes, to a fiber optic Mach-Zehnder interferometer. We showed that this control system is able to keep the interferometer in quadrature, suppress the signal fading, lead to high accuracy control, featuring ease of implementation and high robustness. Thus, the controlled interferometer was employed for the measurement of frequency response and mechanical resonances of a cylindrical piezoelectric actuator. The advantages of an all-fiber interferometric sensor combined with the proposed nonlinear control system features compactness, light weight, alignment free, electromagnetic immunity, high sensitivity, geometric versatility, robustness, real-time high precision measurement, and possibility of operation in harsh environments.
In this work we show that the fiber optic angular displacement sensor is capable of Lamb wave detection, with results
comparable to a piezoelectric transducer. Therefore, the fiber optic sensor has a great potential to be used as the Lamb
wave ultrasonic receiver and to perform non-destructive and non-contact testing.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.