KEYWORDS: Bone, Raman spectroscopy, Signal detection, In vivo imaging, Raman scattering, Scattering, Spectroscopy, Diseases and disorders, Collagen, Minerals, Optical properties
Bone diseases and disorders are a growing challenge in aging populations; so effective diagnostic and therapeutic solutions are now essential to manage the demands of healthcare sectors effectively. Spatially offset Raman spectroscopy (SORS) allows for chemically specific sub-surface probing and has a great potential to become an in vivo tool for early non-invasive detection of bone conditions. Bone is a complex hierarchical material and the volume probed by SORS is dependent on its optical properties. Understanding and taking into account the variations in diffuse scattering properties of light in various bone types is essential for the effective development and optimization of SORS as a diagnostic in vivo tool for characterizing bone disease. This study presents SORS investigations at 830 nm excitation on two specific types of bone with differing mineralization levels. Thin slices of bone from horse metacarpal cortex (0.6 mm thick) and whale bulla (1.0 mm thick) were cut and stacked on top of each other (4-7 layers with a total thickness of 4.1 mm). To investigate the depth origin of the detected Raman signal inside the bone a 0.38 mm thin Teflon slice was used as test sample and inserted in between the layers of stacked bone slices. For both types of bone it could be demonstrated that chemically specific Raman signatures different from those of normal bone can be retrieved through 3.8-4.0 mm of overlying bone material with a spatial offset of 7-8 mm. The determined penetration depths can be correlated with the mechanical and optical properties of the specimens. The findings of this study increase our understanding of SORS analysis of bone and thus have impact for medical diagnostic applications e.g. enabling the non-invasive detection of spectral changes caused by degeneration, infection or cancer deep inside the bone matrix.
Raman Spectroscopy has become an important technique for assessing the composition of excised sections of bone, and is currently being developed as an in vivo tool for transcutaneous detection of bone disease using spatially offset Raman spectroscopy (SORS). The sampling volume of the Raman technique (and thus the amount of bone material interrogated by SORS) depends on the nature of the photon scattering in the probed tissue. Bone is a complex hierarchical material and to date little is known regarding its diffuse scattering properties which are important for the development and optimization of SORS as a diagnostic tool for characterizing bone disease in vivo. SORS measurements at 830 nm excitation wavelength are carried out on stratified samples to determine the depth from which the Raman signal originates within bone tissue. The measurements are made using a 0.38 mm thin Teflon slice, to give a pronounced and defined spectral signature, inserted in between layers of stacked 0.60 mm thin equine bone slices. Comparing the stack of bone slices with and without underlying bone section below the Teflon slice illustrated that thin sections of bone can lose appreciable number of photons through the unilluminated back surface. The results show that larger SORS offsets lead to progressively larger penetration depth into the sample; different Raman spectral signatures could be retrieved through up to 3.9 mm of overlying bone material with a 7 mm offset. These findings have direct impact on potential diagnostic medical applications; for instance on the detection of bone tumors or areas of infected bone.
Modern transfusion medicine relies on the safe, secure, and cost-effective delivery of donated red blood cells (RBCs). Once isolated, RBCs are suspended in a defined additive solution and stored in plastic blood bags in which, over time, they undergo chemical, physiological, and morphological changes that may have a deleterious impact on some patients. Regulations limit the storage period to 42 days and the cells do not routinely undergo analytical testing before use. In this study, we use Raman spectroscopy to interrogate stored RBCs and we identify metabolic and cell-breakdown products, such as haemoglobin and membrane fragments, that build-up in the blood bags as the cells age. Our work points the way to the development of an instrument which could quickly and easily assess the biochemical nature of stored RBC units before they are transfused.
In long bones, the functional adaptation of shape and structure occurs along the whole length of the organ. This study explores the hypothesis that adaptation of bone composition is also site-specific and that the mineral-to-collagen ratio of bone (and, thus, its mechanical properties) varies along the organ’s length. Raman spectroscopy was used to map the chemical composition of long bones along their entire length in fine spatial resolution (1 mm), and then biochemical analysis was used to measure the mineral, collagen, water, and sulfated glycosaminoglycan content where site-specific differences were seen. The results show that the mineral-to-collagen ratio of the bone material in human tibiae varies by <5% along the mid-shaft but decreases by >10% toward the flared extremities of the bone. Comparisons with long bones from other large animals (horses, sheep, and deer) gave similar results with bone material composition changing across tens of centimeters. The composition of the bone apatite also varied with the phosphate-to-carbonate ratio decreasing toward the ends of the tibia. The data highlight the complexity of adaptive changes and raise interesting questions about the biochemical control mechanisms involved. In addition to their biological interest, the data provide timely information to researchers developing Raman spectroscopy as a noninvasive tool for measuring bone composition in vivo (particularly with regard to sampling and measurement protocol).
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.