The x-ray polarization of compact objects in x-ray binaries allows us to understand the complex spacetimes surrounding these sources. XL-Calibur is a state-of-the-art, balloon-borne telescope that measures the linear polarization of stellar-mass black holes, neutron stars, and nebulae in the 15-80 keV energy band. The selected energy range allows for observing coronal emission from black holes while also enabling us to narrow down on emission models from neutron stars, pulsars, and magnetars. Early in 2024, XL-Calibur will be launched from Kiruna, Sweden for approximately 10 days to observe Cyg X-1 and Cyg X-3, or other sources chosen based on flux levels at the time of flight. Observations might be coordinated with the recently launched Imaging x-ray Polarimetry Explorer mission which measures polarization in the complimentary 2-8 keV band. Combined XL-Calibur and IXPE observations will yield information on both soft and hard x-rays allowing us to decompose the total emission from black holes into thermal disk and coronal. We discuss the characterization of the XL-Calibur CdZnTe detectors, the telescope mirror and truss setup, and preliminary results from our most recent flight.
The new generation of x-ray and gamma-ray detectors employ cryogenic detectors known as transition-edge sensors (TES) due to their high energy resolution and photon detection rates. These detectors require a refrigeration module that can operate at the transition temperature of the TES’s superconducting film—usually at mK temperatures. DR-TES consists of a novel mini-dilution refrigerator (DR) from Chase Research Cryogenics that can be used in balloon-borne missions to cool detectors to temperatures between 10 to 100mK. To test the viability of this DR module, we will be cooling down a SLEDGEHAMMER detector fabricated by the National Institute of Standards and Technology quantum sensor group. The SLEDGEHAMMER microcalorimeter uses TESs coupled to superconducting quantum interference devices which are in turn coupled to microwave resonators to detect x-rays and gamma-rays. We plan to fly the SLEDGEHAMMER detector cooled by the mini-DR on a stratospheric balloon flight in August of 2024 at Fort Sumner, NM. As a follow-up mission, 511-CAM will use a modified version of the detector to map the 511keV emission from the galactic center region.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.