High power radio frequency (RF) transfer-doped diamond field effect transistors (FETs) are being fabricated at the Army Research Laboratory (ARL). To implement these into radar systems we have a parallel effort to extract accurate compact models from their measured DC and RF data. At this early stage we are using the commercially available Angelov model and will discuss fitting the model parameters and how their parameter values differ from GaN and GaAs FETs. Results indicate good model prediction of measured results in some cases. Also, model extraction can indicate areas of the device that needs greater attention for improved performance such as the access region resistance. Furthermore, in the saturation region of operation these transistors exhibit a hole saturation velocity of 5 × 106 cm/s obtained from extracted model parameters.
Army Research Laboratory (ARL) is developing radio frequency (RF) field-effect-transistors (FETs) on hydrogen-terminated, single-crystal diamond surfaces. By employing advanced fabrication methods, we achieve state-of-the-art device performance with gate lengths below 100 nm. We are exploring methods to improve the stability of fabricated FETs, which is critical for maturation of the technology and its commercial acceptance. DC and RF measurement data will be reviewed and discussed within the framework of improving device yield and reliability.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.