KEYWORDS: Image segmentation, Computed tomography, Medical imaging, Chemical vapor deposition, Angiography, Heart, 3D image processing, Magnetic resonance imaging, Prostate, Arteries
Cardiovascular diseases (CVD) are the leading cause of disability and death worldwide. Many parameters based on left ventricular myocardium (LVM), including left ventricular mass, the left ventricular volume, and the ejection fraction (EF) are widely used for disease diagnosis and prognosis prediction. To investigate the relationship between parameters derived from the LVM and various heart diseases, it is crucial to segment the LVM in a fast and reproducible way. However, different diseases can affect the structure of the LVM, which increases the complexity of the already time-consuming manual segmentation work. In this work, we propose to use a 3D deep attention U-Net method to segment the LVM contour for cardiac CT images automatically. We used 50 patients’ cardiac CT images to test the proposed method. The Dice similarity coefficient (DSC), sensitivity, specificity, and mean surface distance (MSD) were 87% ± 5%, 87% ± 4%, 92% ± 3% and 0.68 ± 0.15 mm, which demonstrated the detection and segmentation accuracy of the proposed method.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.