During the fabricating procedure of optical elements, computer-controlled tools will introduce some periodic structured errors, named mid-spatial frequency errors, which may scatter the laser beams, create filamentous spots or even damage the optical components in Inertial Confinement Fusion (ICF) high power laser system. Transverse translation diverse phase retrieval (TTDPR) is an ingenious phase retrieval method for measuring aspheric and freeform surfaces. In this paper, we explore the measurement of optical elements with mid-spatial frequency errors by using TTDPR. First, we briefly introduce the features of mid-spatial frequency errors and establish the relation between mid-spatial frequency errors and diffraction pattern. Second, with the knowledge of the mid-spatial frequency error, we analyze the feasibility of optical elements with mid-spatial frequency error measurement by using TTDPR. In order to improve the convergence and measurement accuracy of phase retrieval algorithm, initial inputs are optimized for the following iterative phase retrieval algorithm. Results indicate that a 50% higher reconstruction accuracy can be achieved, when the initial input is the ideal lens to recover the phase of lens with mid-spatial frequency errors. For TTDPR, sub-aperture illuminated with overlapping part among adjacent sub-apertures will improve accuracy of iterative phase algorithm than never overlapped sub-aperture, while it encumbers the efficiency of iterative phase retrieval algorithm. Based on the characteristics of the particular optical surfaces, the influence of major parameter of sub-aperture including the size of sub-aperture and the overlapped proportion among adjacent sub-aperture to accuracy and efficiency of TTDPR are also discussed.
In inertial confinement fusion high energy system, the mid-spatial frequency (MSF) errors of optical elements induced by computer numerical control tools lead to damage to the optical system. Based on the characteristics of the mid-spatial frequency errors, it is measured by using phase retrieval technology. Compared with conventional measurement methods such as interferometry, MSF errors can be measured by phase retrieval without complex measurement systems and large aperture optical elements with MSF errors can be measured via phase retrieval in theory. In this paper, we compare multiple phase retrieval algorithms that are used to measure optical element with MSF errors and explore approaches to improve the quality of results. First, we briefly introduce the feature of MSF errors and the relation between the wavefront of optical element with MSF errors and its diffraction pattern. Second, multiple phase retrieval algorithms including error-reduction (ER) algorithm, hybrid input-output (HIO) algorithm and oversampling smoothness (OSS) algorithm are adapted for the measurement of MSF errors. According to the bandwidth and structure characteristics of MSF errors, the convergence speed and the accuracy of above algorithms are discussed and compared. Then, according to the characteristics of different algorithms, different retrieved wavefront phase via using these algorithms are integrated to improve the accuracy of results. Last, based on the feature of MSF errors, the priori knowledge of algorithms is also discussed to further gear up the convergence speed and the accuracy of algorithms.
Large-aperture and long focal-length lens is widely used in high energy laser system. The method based on Talbot interferometry is a reliable method to measure the focal length of such elements. By employing divergent beam and two gratings of different periods, this method could realize full-aperture measurement, higher accuracy and better repeatability. However, it does not take into account the spherical aberration of the measured lens resulting in the moiré fringes bending, which will introduce measurement error. Furthermore, in long-focal measurement with divergent beam, this error is an important factor affecting the measurement accuracy. In this paper, we propose a new spherical aberration compensation method, which could significantly reduce the measurement error. Characterized by central-symmetric scanning window, the proposed method is based on the relationship between spherical aberration and the lens aperture. Angle data of moiré fringes in each scanning window is retrieved by Fourier analysis and statistically fitted to estimate a globally optimum value for spherical-aberration-free focal length calculation. Simulation and experiment have been carried out. Compared to the previous work, the proposed method is able to reduce the relative measurement error by 50%. The effect of scanning window size and shift step length on the results is also discussed.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.