Electro-modulation (EM) is used to measure interfacial hole densities in operating OLEDs. This in-situ
optical probe has provided us with a measure of relative hole and electron currents in a wide range of
OLED structures. Insight to the dynamics of interfacial hole densities allows an assessment of the longterm
stability of electron-hole balance, and therefore helps greatly with the identification of
electroluminescence (EL) degradation mechanisms. Here, we limit the investigation to NPB/AlQ3 OLEDs,
but note that the technique is versatile, and can be readily adapted to a wide range OLED structures,
especially those comprising arylamine -based hole transport materials and interlayers.
We have studied the temperature-dependent photoluminescence (PL) characteristics of oxidised PFO thin films at temperatures above 298K. We find the relative strength of the green emission band (g-band) to increase greatly at temperatures corresponding to the onset of crystallisation. Based on the proposal that the g-band arises from a fluorenone-based excimer, this finding would seem to indicate that a close approach of neighbouring fluorenone-containing segments may be energetically favourable. Finally, by successfully identifying diffusion-limited and dynamic equilibrium regimes within the temperature dependence of the ratio R=ID/IM, we extract an activation energy for excimer formation of ~ 0.05 eV and an excimer binding energy of ~ 0.51 eV. This is a relatively high binding energy for an excimer and lends credibility to the notion of an energetically favourable fluorenone:fluorenone coupling configuration, perhaps as a result of the considerable ground state dipole moments associated with the ketone group.
We report systematic measurements of the evolution of the emission characteristics of PFO whilst undergoing photo-oxidation. Pure PFO and highly diluted PFO/polystyrene blended films were prepared for the studies by spin-coating. Each film was oxidized by exposure to the 351 nm line of a cw Ar+ laser. Both the kinetics of the various spectral components and the photoluminescence intensity for each film was monitored as a function of oxidation time and their respective behaviors were compared. Our results demonstrate that there is a strong tendency for singlet intrachain excitons initially created on pristine PFO segments to migrate to the fluorenone moieties produced by photo-oxidation. However, we conclusively show that emission from states localized at these defect sites cannot account for the appearance of the broad green emission band (g-band) that is well-known to occur in degraded polyfluorenes. Instead, it is shown that the g-band must emanate from interchain states that are formed after energy has been transferred to the fluorenone moieties (either via energy transfer form non-defective PFO segments or by direct excitation).
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.