Proceedings Article | 21 June 2017
KEYWORDS: Terahertz radiation, Plasma, Waveguides, Photonic crystals, Dispersion, Electromagnetic radiation, Wave propagation, Radio propagation, Electromagnetism, Photonic integrated circuits
In conventional radiation sources, narrowband radiation emission can be obtained by narrowband current oscillation. Usually the spectrum of the oscillating current is made narrow by a large or complicated structure for wave-particle interaction. One good example is the beam-undulator system. In this presentation, we introduce a new method to obtain a radiation emission with a well-collimated frequency without changing the broadband nature of a given current source. The method is based on our recent discovery of the new physical properties of the cut-off phenomenon, which broadly exists in general plasma-like media, such as plasma, waveguide, or photonic crystal, etc. A common feature of these media is the Bohm-Gross dispersion relation, which has a frequency condition to make the wavenumber zero. In the zero-wavenumber state, an electromagnetic wave cannot propagate through the medium, but instead, is reflected (i.e. cut-off). In regular steady-state analysis, the cut-off condition is characterized by infinite radiation impedance. An interesting question here is what would happen to the radiation power, if a non-zero current oscillating with the cut-off frequency were enforced in a medium (a current source, in contrast with the regular voltage source). A regular steady-state analysis for this situation leads to infinite power of radiation from Ohm’s law. We could solve such a paradoxical situation by analyzing the non-steady-state system; we found that the system can be described by a time-dependent Schroedinger equation with an external driving term. The solution of this equation shows a temporally growing electromagnetic field. When this concept is extended to a generally broadband current source, the spectral density at the cut-off frequency can be selectively enhanced (selectively enhanced emission, SEE). Hence a general broadband radiation source can be easily converted to a narrowband source by enclosing the system with a plasma-like medium. The current source seems to exist in many radiation systems with a low driver-to-emission efficiency. When the current is determined predominantly by the driver (for examples, laser pulses), while the feedback from the emitted field is weak, such current can be considered as a quasi-current source, We present a few examples (mostly from PIC simulations) to demonstrate the SEE; two-color-driven THz system enclosed by a tapered waveguide, THz emission from a magnetized plasma, and re-interpretation of experimental data. Those examples show that quasi-current source can be found in practical systems, and the SEE mechanism works.