The continuous scaling of 3D NAND by vertically stacking more tiers in a single die presents some major challenges . One of these challenges is the effect of increasing surface topography on photolithography. Although photolithography is relaxed in 3D NAND process compared to 2D NAND, surface topography can lead to a reduced process window (PW) of critical immersion levels. For a metal routing level near the top of the die stack, up to ~240 nm of topography can be present at immersion photolithography levels. In tight pitch regions of the metal routing layout, topography variations can cause poor printing, particularly near locations where the metal routing bends due to various layout constraints. Edge progression and corner jog layout optimization provide a solution to this less-discussed challenge in the 3D NAND fabrication process. Simulation results show a 70% increase of the PW in the areas where edge progression was applied. In bending regions of the metal routing, jog optimization improves the PW by 40%. These two layout optimization techniques increased the overall metal routing PW by ~40%, and this increase was validated by wafer FEM data. Additionally, the same jog optimization and edge progression techniques can be used to fix hot spot areas due to process variations. This paper presents a solution to compensate for the decreased PW of the metal routing level near the top of a 64-tier 3D NAND die due to fab topography issues through corner jog and edge progression layout optimization.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.