On line detection techniques to monitor the health of rotating engine components are becoming increasingly attractive
options to aircraft engine companies in order to increase safety of operation and lower maintenance costs. Health
monitoring remains a challenging feature to easily implement, especially, in the presence of scattered loading conditions,
crack size, component geometry and materials properties. The current trend, however, is to utilize noninvasive types of
health monitoring or nondestructive techniques to detect hidden flaws and mini cracks before any catastrophic event
occurs. These techniques go further to evaluate materials' discontinuities and other anomalies that have grown to the
level of critical defects which can lead to failure. Generally, health monitoring is highly dependent on sensor systems
that are capable of performing in various engine environmental conditions and able to transmit a signal upon a
predetermined crack length, while acting in a neutral form upon the overall performance of the engine system. Efforts
are under way at NASA Glenn Research Center through support of the Intelligent Vehicle Health Management Project
(IVHM) to develop and implement such sensor technology for a wide variety of applications. These efforts are focused on developing high temperature, wireless, low cost and durable products.
Therefore, in an effort to address the technical issues concerning health monitoring of a rotor disk, this paper considers
data collected from an experimental study using high frequency capacitive sensor technology to capture blade tip
clearance and tip timing measurements in a rotating engine-like-disk-to predict the disk faults and assess its structural
integrity. The experimental results collected at a range of rotational speeds from tests conducted at the NASA Glenn Research Center's Rotordynamics Laboratory will be evaluated using multiple data-driven anomaly detection techniques to identify anomalies in the disk. This study is expected to present a select evaluation of online health monitoring of a rotating disk using these high caliber sensors and test the capability of the in-house spin system.
Conference Committee Involvement (2)
Data Mining, Intrusion Detection, Information Assurance, and Data Networks Security 2006
17 April 2006 | Orlando (Kissimmee), Florida, United States
Data Mining, Intrusion Detection, Information Assurance, and Data Networks Security 2005
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.