Detection of anomalies in hyperspectral clutter is an important task in military surveillance. Most algorithms for unsupervised anomaly detection make either explicit or implicit assumptions about hyperspectral clutter statistics: for instance that the abundance is either normally distributed or elliptically contoured. In this paper we investigate the validity of such claims. We show that while non-elliptical contouring is not necessarily a barrier to anomaly detection, it may be possible to do better. In this paper we show how various generative models which replicate the competitive behaviour of vegetation at a mathematically tractable level lead to hyperspectral clutter statistics which do not have Elliptically Contoured (EC) distributions. We develop a statistical test and a method for visualizing the degree of elliptical contouring of real data. Having observed that in common with the generative models much real data fails to be elliptically contoured, we develop a new method for anomaly detection that has good performance on non-EC data.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.