Self-phase modulation (SPM) is an important third-order nonlinear optical process that has been widely used in many applications, such as broadband optical sources, optical diodes, optical spectroscopy, pulse compression, and many others. The ability to realize SPM based on-chip integrated photonic devices will reap attractive benefits of compact footprint, high stability, high scalability, and low-cost mass production. Here, we experimentally investigate enhanced SPM in silicon nitride (Si3N4) waveguides by integrating with 2D graphene oxide (GO) films. The on-chip integration of GO films is achieved on Si3N4 waveguides through a solution-based, transfer-free, layer-by-layer coating method with precise control of the film thickness. We use both picosecond and femtosecond optical pulses to perform detailed SPM measurements. Owing to the high Kerr nonlinearity of GO, the GO-coated waveguides show significantly improved spectral broadening for both the picosecond and femtosecond optical pulses compared to the uncoated waveguide, achieving a broadening factor of up to ~3.4 for a device with 2 layers of GO. Based on the experimental results which show good agreement with theory, we obtain an improvement in the waveguide nonlinear parameter by a factor of up to 18.4 and a Kerr coefficient (n2) of GO that is about 5 orders of magnitude higher than Si3N4. These results reveal the effectiveness of 2D GO films to improve the nonlinear performance of Si3N4 waveguides.
The power-sensitive photo-thermal tuning (PTT) of two-dimensional (2D) graphene oxide (GO) integrated on the top surface of silicon nitride (SiN) waveguides is experimentally investigated. For SiN waveguide coating with monolayer GO, the light power thresholds for reversible and permanent GO reduction are measured. There are three reduction stages identified based on the presence of reversible versus permanent reduction. We also compared the PTT induced by a continuous-wave laser and a pulsed laser with the same average power, confirming that the PTT is primarily determined by the average input power.
Silicon photonic platforms are becoming more and more mature with competitive devices suitable for increasing needs of HPC (High Performance Computing) systems and datacenters. Compared to bulk III-V technologies, Si photonic technologies are suffering from the lack of integrated light source. Several works have been done in the past years to integrate laser on silicon using III-V direct bonding on top of patterned silicon. These demonstrations were using a CMOS compatible process for the silicon part but all the process steps following the introduction of the III-V material were done with small wafer diameter III-V fabrication lines. With such integrations, the cost advantage of silicon photonics based on the use of CMOS platforms and large wafer format is no more valid.
In this paper we present the integration of a hybrid III-V/Si laser using a fully CMOS compatible 200mm technology. The laser is integrated in a mature photonic platform. The additional process modules required for this integration will be deeply described. These modules are localized silicon thickening using damascene process, Bragg reflector patterning with DUV lithography, III-V patterning and ohmic contact formation with no lift-off and without noble metal. This integration is compatible with a multi metal levels planar BEOL, mandatory for photonic circuit design.
The first DFB lasers fabricated with this new platform are operating at 1310nm with a threshold current around 60mA, a SMSR larger than 45dB and more than 1.5mW optical power in the output waveguide. New laser designs, specifically adapted for this new process, will be introduced and fabricated.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.