Self-amplifying mRNA (SAM), a synthetic RNA vaccine which self-replicates upon delivery into the cytoplasm encapsulated with lipid nanoparticles (LNPs), leads to a strong and sustained immune response. In this study, we investigated SAM-LNP uptake and subsequent SAM release and distribution in baby hamster kidney (BHK-21) cells using coherent anti-Stokes Raman scattering (CARS) and multiphoton imaging techniques. This work demonstrates the significance of multimodal imaging techniques to capture the successful delivery of SAM and the subsequent production of proteins within cells. Our study can be further extended to label-free detection techniques to investigate targeted drug-delivery.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.