Small-ELF (SELF) is a 3.5-meter telescope currently entering the manufacturing phase and will serve as a technology precursor for the much larger telescope named ELF (Exo-Life Finder). The primary objective of the proposed design approach is to to radically improve the system’s capabilities for the detection of biomarkers and life in the atmospheres of exoplanets while keeping costs well below the current flagship observatories and thus maintaining cost-effectiveness. This is achieved through innovative approaches in motion and shape control, machine learning, and the integration of tensegrity techniques. SELF's manufacturing phase will commence in 2024-2025, with detailed design and manufacturing specifics outlined in this paper. To further mitigate technical risks, a small 0.25-meter prototype named MicroELF is also being designed and built in 2024. MicroELF incorporates the proposed optical and mechanical design to allow varying degrees of freedom for each component and utilizes distributed aperture principles akin to SELF. The degrees of freedom in MicroELF are controllable based on optical image feedback and a machine learning model. The paper details the optomechanical complexity of MicroELF, designed for successful construction and demonstration within 2024. SELF and MicroELF, as technology demonstrators, address prevalent cost and scalability challenges in existing telescopes, intending to introduce a novel paradigm in large telescope structural design.
Small-ELF is a 3.5-meter telescope currently in development that will serve as a technology demonstrator for the much larger telescope named ELF (Exo-Life Finder). The ELF is proposed to be built with a minimum effective diameter of 12- meters and is designed to be scalable to a much larger size. The primary objective of the proposed design approach is to radically improve the system’s capabilities for direct imaging of exoplanets while keeping costs well below the current flagship observatories. The basic optical design of Small-ELF consists of an annulus of 15 primary mirror sub-apertures, mounted on an alt-az configuration. As a technology demonstrator, the mechanical design of Small-ELF intends to deliver a versatile and reliable experimental platform to implement and verify several new techniques: the use of a tensegrity-based configuration for a light-weight supporting structure, the use of tensioned ropes to actively adjust the telescope geometry, methods of accommodating sub-apertures of significant weight variations, and methods of controlling and mitigating vibrations associated with light-weighted structures through active and passive damping systems. The design also adopts techniques for efficient precision manufacturing and cost control. The unique optical layout and application of tensegrity produce significant weight and subsequent cost reductions. This technology demonstrator tackles the cost and scalability problem faced by most existing telescopes and intends to open a new chapter in large telescope structural design methodology.
ESPRESSO is a fiber feed ultrastable High Resolution Spectrograph designed to work in the Combined-Coudé focus of Very Large Telescopes (VLT). A high resolution (R~100000) and an ultra-high resolution (R~220000) mode will be available to collect the light coming of one VLT telescope. In addition, ESPRESSO has an observing mode which allows to collect light of 2, 3 or 4 VLT units. This mode can feed simultaneously the spectrograph using a 4x1 fiber combiner. In the combiner, the light from 4 octagonal fibers will be mixed when projected onto a square fiber, as a double scrambler device. Here it is presented the design, manufacture, integration and tests for the 4x1 combiner of the ESPRESSO Fiber Link.
Pierced mirrors are used in high resolution and ultrastable spectrographs to feed guiding cameras and to improve the target stability. This paper describes the concept, design, manufacture, test and integration of ESPRESSO pierced mirrors which are part of the Fiber Link subsystem. ESPRESSO is a spectrograph located in the Coude Laboratory of VLT that can be feed by the light of any VLT telescope. Similar mirrors will be used in the Fiber Link subsystem of NIRSP spectrograph which is an Infrared spectrograph for the 3.6 m telescope of the Silla Observatory.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.