Purpose: In conventional diagnosis, the visual inspection of the malaria parasite Plasmodium falciparum in infected red blood cells under a microscope, is done manually by pathologists, which is both laborious and error-prone. Recent studies on automating this process have been conducted using artificial intelligence and feature selection of positional and morphological features from blood smear cell images using convolutional neural network (CNN). However, most deep CNN models do not perform well as per the expectation on small datasets.
Approach: In this context, we propose a comprehensive computer-aided diagnosis scheme for automating the detection of malaria parasites in thin blood smear images using deep CNN, where transfer learning is used for optimizing the feature selection process. As an extra layer of security, layer embeddings are extracted from the intermediate convolutional layers using the feature matrix to cross-check the selection of features in the intermediate layers. The proposal includes the utilization of the ResNet 152 model integrated with the Deep Greedy Network for training, which produces an enhanced quality of prediction.
Results: The performance of the proposed hybrid model has been evaluated concerning the evaluation metrics such as accuracy, precision, recall, specificity, and F1-score, which has been further compared with the pre-existing deep learning algorithms.
Conclusions: The comparative analysis of the results reported based on the accuracy metrics demonstrates promising outcomes concerning the other models. Lastly, the embedding extraction from the intermediate hidden layers and their visual analysis also provides an opportunity for manual verification of the performance of the trained model.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.