Floquet engineering offers a compelling approach for designing the time evolution of periodically driven systems. We implement a periodic atom-light coupling to realize Floquet atom optics on the strontium 1S0 – 3P1 transition. These atom optics reach pulse efficiencies above 99.4% over a wide range of frequency offsets between light and atomic resonance, even under strong driving where this detuning is on the order of the Rabi frequency. Moreover, we use Floquet atom optics to compensate for differential Doppler shifts in large momentum transfer atom interferometers and achieve state-of-the-art momentum separation in excess of 400 ℏk. This technique can be applied to any two-level system at arbitrary coupling strength, with broad application in coherent quantum control.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.