Femtosecond Laser Irradiation followed by Chemical Etching is exploited to create microfluidic devices for High-order Harmonic Generation (HHG) in noble gases. A finetuning of the channels’ diameter and length permits the production of high-order harmonics in completely different regimes, going from the hollow waveguiding regime to the sub-mm interaction regime. We envisage that the high adaptability of our microfluidic approach will allow us to integrate more functionalities in the same integrated device thus paving the way to palm-top HHG solutions.
Fundamental electron dynamics at the attosecond frontier and their direct coupling to structural dynamics of matter yield novel insights into the energy-distribution and protection mechanisms of Nature. The angular-streaking technique has exclusively demonstrated its capability of obtaining the full time-energy structure of XFEL pulses with attosecond resolution directly in the time-domain, thus enabling XFELs to study electron dynamics from element-specific vistas and their importance as onset of subsequent structural dynamics. We will present latest advances of this technique together with first results from the 2022 EuXFEL atto-campaign and the complementary prospects of the FLASH 2020+ innovation project at DESY.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.