Aluminum (pure or alloy) mirrors attract increasing interest, having Young’s Modulus and density similar to glasses. Advantage of high diffusivity offsets disadvantage of high thermal expansion coefficient and means that the mirror reaches thermal equilibrium rapidly. High ductility supports extreme light-weighting and complex machining, including fluid-cooling channels in high-energy applications, and integral interface components. Aluminum mirrors are also tolerant to vibrations and shock loads. The material is amenable to single point diamond turning (SPDT) and does not require optical coating. However, SPDT tends to produce mid-spatial frequency artefacts, which are difficult to remove, especially for aspheres and free-forms. These introduce diffraction effects and compromise stray light performance. In our previous research, we have demonstrated the potential of industrial robots to automate manual interventions with CNC polishing machines, and to provide surface-processing capabilities in their own right. We have also presented research concerning the mismatch between rigid and semi-rigid tools (including non-Newtonian tools), and aspheric surfaces. In this paper, we report on polishing of spherical and aspheric aluminum mirrors using an industrial robot. This includes tool-design, tool-path generation, texture control and removal of the mid-spatial frequency artefacts. We have investigated removal-rates and textures achieved, using different specialized slurries, polishing pads and special tool-paths. An effective process has been established, achieving Sa of 5nm on a 400mm square witness sample and a 490mm elliptical off-axis parabolic mirror.
After the formal acceptance of our fabrication of E-ELT segments, we aim to further accelerate the mass production by introducing an intermediate grolishing procedure using industrial robots, reducing the total process time by this much faster and parallel link. In this paper, we have presented research outputs on tool design, tool path generation, study of mismatch between rigid, semi-rigid tool and aspheric surface. It is indicated that the generation of mid-spatial frequency is proportional to the grit size and misfit between work piece and tool surfaces. Using a Non-Newtonian material tool with a spindle speed of 30 rpm has successfully reduce the mid-spatial error. The optimization of process parameters involve the study the combination effects of the above factors. These optimized parameters will result in a lookup table for reference of given input surface quality. Future work may include the higher spindle speed for grolishing with non- Newtonian tool looking for potential applications regarding to form correction, higher removal rate and edge control.
Following formal acceptance by ESO of three 1.4m hexagonal off-axis prototype mirror segments, one circular segment, and certification of our optical test facility, we turn our attention to the challenge of segment mass-production. In this paper, we focus on the role of industrial robots, highlighting complementarity with Zeeko CNC polishing machines, and presenting results using robots to provide intermediate processing between CNC grinding and polishing. We also describe the marriage of robots and Zeeko machines to automate currently manual operations; steps towards our ultimate vision of fully autonomous manufacturing cells, with impact throughout the optical manufacturing community and beyond.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.