An approach to image labeling by seabed context based on multiple-instance learning via embedded instance selection (MILES) is presented. Sonar images are first segmented into superpixels with associated intensity and texture feature distributions. These superpixels are defined as the "instances" and the sonar images are defined as the "bags" within the MILES classification framework. The intensity feature distributions are discrete while the texture feature distributions are continuous, thus the Cauchy-Schwarz divergence metric is used to embed the instances in a higher-dimensional discriminatory space. Results are given for labeled synthetic aperture sonar (SAS) image database containing images with a variety of seabed textures.
Characteristics of underwater targets displayed in synthetic aperture sonar (SAS) imagery vary depending on their environmental context. Discriminative features in sea grass may differ from the features that are discriminative in sand ripple, for example. Environmentally-adaptive target detection and classification systems that take into account environmental context, therefore, have the potential for improved results. This paper presents an end-to-end environmentally-adaptive target detection system for SAS imagery that performs target recognition while accounting for environmental context. First, locations of interest are identified in the imagery using the Reed-Xiaoli (RX) detector and a Non-Gaussian detector based on the multivariate Laplace distribution. Then, the Multiple Instance Learning via Embedded Instance Selection (MILES) approach is used to identify the environmental context of the targets. Finally, target features are extracted and a set of environmentally-specific k-Nearest Neighbors (k-NN) classifiers are applied. Experiments were conducted on a collection of both high and low frequency SAS imagery with a variety of environmental contexts and results show improved classification accuracy between target classes when compared with classification results with no environmental consideration.
This paper proposes a possibilistic context identification approach for synthetic aperture sonar (SAS) imagery. SAS seabed imagery can display a variety of textures that can be used to identify seabed types such as sea grass, sand ripple and hard-packed sand, etc. Target objects in SAS imagery often have varying characteristics and features due to changing environmental context. Therefore, methods that can identify the seabed environment can be used to assist in target classification and detection in an environmentally adaptive or context-dependent approach. In this paper, a possibilistic context identification approach is used to identify the seabed contexts. Alternative methods, such as crisp, fuzzy or probabilistic methods, would force one type of context on every sample in the imagery, ignoring the possibility that the test imagery may include an environmental context that has not yet appeared in the training process. The proposed possibilistic approach has an advantage in that it can both identify known contexts as well as identify when an unknown context has been encountered. Experiments are conducted on a collection of SAS imagery that display a variety of environmental features.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.