Ultraviolet (UV) plasmonic nanostructures hold promises in enabling label-free sensing of biomolecules using their native fluorescence. Several UV plasmonic structures have been explored to enhance native fluorescence of biomolecules, including metallic thin film, particle array, hole array using aluminum, magnesium, indium, etc. However, the enhancement factor of them is quite small, with less than 80 times for nucleic acids and less than 15 times for amino acids. In order to achieve higher enhancement factor, we study a bowtie nano-antenna (BNA) made of aluminum (Al) in the ultraviolet region. The effect of the native oxide layer on Al is also investigated. The numerical simulation has shown 1026x net enhancement with the optimal geometry.
Despite of increasing understandings of UV plasmonic materials, materials that can enable active tuning of UV plasmonic resonance has not been reported. Here, we demonstrate a modification of UV SPR on an aluminum (Al) hole-array by coupling Graphene π plasmon resonance with Al SPR. Graphene monolayer exhibits an abnormal absorption peak in the UV region (270-290nm) due to π plasmon resonance. The location and intensity of the absorption peak depend on the position of Fermi-level, which can be adjusted by electric or chemical doping. Al SPR is shown here to be modified by coupling Graphene π plasmon resonance with Al SPR.
FDTD simulation shows the modification of Al hole-array transmission by adding a single layer of Graphene on top. The shifts of transmission dips after adding a Graphene layer shows a distinct transition at around the Graphene π plasmon position. For transmission dips that are located at shorter wavelength compared to Graphene π plasmon, up to 8nm blue shifts occur after adding Graphene. On the other hand, up to 20nm redshifts occur for transmission dips that are at a longer wavelength relative to Graphene π plasmon. This change in the sign of shifts of transmission dips corresponds to the change in the sign of the real permittivity of Graphene. The amount of shifts diminishes as the transmission dip moves further away from Graphene π plasmon resonance into the visible spectrum. Experimentally we have observed redshifts of SPR dips but not blue shifts possibly due to the poor light collection below 250nm.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.