In the high-power laser device, through precisely positioning the target and pointing multiple laser beams at a very small area on the target surface, the laser power density coupled with the target can be greatly improved and is conducive to the research of laser-induced plasma experiments. This paper proposes a set of target positioning and laser beam pointing system, which has advantages of high experiment efficiency, high target positioning and laser pointing accuracy. This system can automatically correct the attitude and position of targets, and make all laser converge together by adjusting their incident directions. It was verified that the target positioning error is 14.83 µm and the beam guidance accuracy is 9.70 µm.
The square pulse output of Linear transformer driver (LTD) is of great interest for excimer lasers, where the efficiency can be greatly improved in this way. The design of square pulse output LTD within the single cavity was presented, then the influence of jitter and loop inductance on square pulse output was studied, it can be found that the higher the value of the jitter and loop inductance, the more the risetime of the voltage pulse, which hinders the shaping of the square pulse output. Then the method to change the square pulse width by varying the triggering times was presented, through the simulation, it is found that when the triggering interval is set to 15s, the square pulse characteristics of the voltage output are more obvious, the flat top is flat, and the pulse width is wider. The bricks within the single cavity can be designed by two methods, where the one is using the same sized capacitors, the other is using the different sized capacitors to synthesize a flat voltage pulse, the choice of the two methods should be based on the cost and requirements of the excimer laser, including the amplitude of the output voltage, the pulse width and the laser beam quality. The reference of designing the square pulse LTD can be provided by this paper
The X-ray properties of Al plasmas were studied experimentally by using the excimer laser facility in the State Key Laboratory of Laser Interaction with Matte. Radiated fluxes were recorded within two X-ray diodes, and the relative spectral distributions were recorded within an X-ray flat-field grating spectrograph, respectively. Experimental results indicated that the major X-ray photons were between 60 eV and 360 eV. By employing the spectral integration method, the measured data were appropriately processed to obtain absolute energies of the X-ray that radiated from Al plasmas.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.