Fuel structural characteristics affect fire behavior including fire intensity, spread rate, flame structure, and duration, therefore, quantifying forest fuel structure has significance in understanding fire behavior as well as providing information for fire management activities (e.g., planned burns, suppression, fuel hazard assessment, and fuel treatment). This paper presents a method of forest fuel strata classification with an integration between terrestrial light detection and ranging (LiDAR) data and geographic information system for automatically assessing forest fuel structural characteristics (e.g., fuel horizontal continuity and vertical arrangement). The accuracy of fuel description derived from terrestrial LiDAR scanning (TLS) data was assessed by field measured surface fuel depth and fuel percentage covers at distinct vertical layers. The comparison of TLS-derived depth and percentage cover at surface fuel layer with the field measurements produced root mean square error values of 1.1 cm and 5.4%, respectively. TLS-derived percentage cover explained 92% of the variation in percentage cover at all fuel layers of the entire dataset. The outcome indicated TLS-derived fuel characteristics are strongly consistent with field measured values. TLS can be used to efficiently and consistently classify forest vertical layers to provide more precise information for forest fuel hazard assessment and surface fuel load estimation in order to assist forest fuels management and fire-related operational activities. It can also be beneficial for mapping forest habitat, wildlife conservation, and ecosystem management.
Accurately describing forest surface fuel load is significant for understanding bushfire behaviour and suppression difficulties, predicting ongoing fires for operational activities, as well as assessing potential fire hazards. In this study, the Light Detection and Ranging (LiDAR) data was used to estimate surface fuel load, due to its ability to provide three-dimensional information to quantify forest structural characteristics with high spatial accuracies. Firstly, the multilayered eucalypt forest vegetation was stratified by identifying the cut point of the mixture distribution of LiDAR point density through a non-parametric fitting strategy as well as derivative functions. Secondly, the LiDAR indices of heights, intensity, topography, and canopy density were extracted. Thirdly, these LiDAR indices, forest type and previous fire disturbances were then used to develop two predictive models to estimate surface fuel load through multiple regression analysis. Model 1 was developed based on LiDAR indices, which produced a R2 value of 0.63. Model 2 (R2 = 0.8) was derived from LiDAR indices, forest type and previous fire disturbances. The accurate and consistent spatial variation in surface fuel load derived from both models could be used to assist fire authorities in guiding fire hazard-reduction burns and fire suppressions in the Upper Yarra Reservoir area, Victoria, Australia.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.