We have demonstrated a widely-tunable femtosecond fiber source between 770-1180 nm enabled by self-phase modulation, and the wide spectral coverage is suitable for most of two-photon fluorescence microscopy applications. Based on femtosecond Yb:fiber laser, we also compared spectral broadening in different dispersion regimes using different photonic crystal fibers. We managed to maximize the self-phase modulated feature from the broadened spectra while avoiding unwanted nonlinear temporal trapping. The optimization of fiber selection and laser input conditions led to a wide tunability down to below 800nm region, which is the most commonly used two-photon excitation wavelength for many intrinsic fluorescent labels in biological tissues. We believe this fiber-based femtosecond source can be a relatively cost-effective and robust solution for most of two-photon fluorescence microscopy applications.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.