Recently, a new technique called MINFLUX was promoted and attained ~1-nanometer precision. However, MINFLUX is incapable of discerning two molecules within the diffraction-limited region unless with the help of on-off switching scheme of SMLM which yet entails time-consuming processes. Here, we produce a novel kind of focal spot pattern, called sub-diffraction dark spot, to localize molecules within the sub-diffraction region of interest. In our proposed technique nominated as sub-diffracted dark spot localization microscopy (SDLM), multiple molecules within the diffraction-limited region could be distinguished without the requirement of fluorescent switches. We have numerically presented the SDLM modality and some impacts, like intensity, are investigated. Simulative localization framework has been implemented on randomly-distributed and specifically-structured samples. SDLM is evidenced to have high localization accuracy and stability in densely-packed fluorescent solution.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.