We present a temperature influence (in range from 78 up to 300 K) on the spectroscopic and laser properties of Tm:SrF2 crystal doped with 2 at. % of Tm3+. The sample was grown using the temperature gradient technique in shape of a single-crystal fiber (d= 2 mm, l = 5 mm) with plane-parallel face-polished without any AR coating. The Tm:SrF2 crystal was mounted in a temperature-controlled copper holder of the liquid nitrogen cryostat. The measured absorption and emission spectra remained broad even at low temperature. The fluorescence lifetime was fitted with a double exponential function, and the measured lifetime changed significantly with temperature decrease. The 147 mm long semi-hemispherical laser resonator consisted of a flat pumping mirror (T < 95 % @ 763 nm, HR @ 1750-2100 nm) placed inside the cryostat and a curved output coupler (r=150 mm, R=97.5 % @ 1750-2100 nm) placed outside the cryostat. For longitudinal pumping, a fiber coupled laser diode was used. The diode was operating in the pulse regime (5 ms pulse length, 10 Hz repetition rate) at wavelength 763 nm. At room temperature, the laser emission was achieved at 1949 nm with a high 38 % slope efficiency. With a temperature decrease, the slope efficiency increased, and the laser threshold decreased, and the laser output wavelength shifted.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.