Beam alignment of multi-pass amplification is based on cavity mirror alignment. To optimize multi-segmental parallel cavity mirror alignment arithmetic of high power solid-state lasers, propose a new type of arithmetic of multi-pass beam path cavity mirror based on diffraction symmetry, and the accuracy of multi-pass amplification beam path alignment is improved by 10μrad up to 3.96μrad. The arithmetic avoids low accuracy of CM alignment caused by poor image quality, It makes SG-Ⅲ facility operate long term and properly.
The high power solid laser system is becoming larger and higher energy that requires the beam automatic alignment faster and higher precision to ensure safety running of laser system and increase the shooting success rate. This paper take SGIII laser facility for instance, introduce the basic principle of automatic alignment of large laser system. The automatic alignment based on digital image processing technology which use the imaging of seven-classes spatial filter pinholes for feedback to working. Practical application indicates that automatic alignment system of cavity mirror in SGIII facility can finish the work in 210 seconds of four bundles and will not exceed 270 seconds of all six bundles. The alignment precision promoted to 2.5% aperture from 8% aperture. The automatic alignment makes it possible for fast and safety running of lager laser system.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.