Structured illumination microscopy (SIM) has been widely applied in the superresolution imaging of subcellular dynamics in live cells. Higher spatial resolution is expected for the observation of finer structures. However, further increasing spatial resolution in SIM under the condition of strong background and noise levels remains challenging. Here, we report a method to achieve deep resolution enhancement of SIM by combining an untrained neural network with an alternating direction method of multipliers (ADMM) framework, i.e., ADMM-DRE-SIM. By exploiting the implicit image priors in the neural network and the Hessian prior in the ADMM framework associated with the optical transfer model of SIM, ADMM-DRE-SIM can further realize the spatial frequency extension without the requirement of training datasets. Moreover, an image degradation model containing the convolution with equivalent point spread function of SIM and additional background map is utilized to suppress the strong background while keeping the structure fidelity. Experimental results by imaging tubulins and actins show that ADMM-DRE-SIM can obtain the resolution enhancement by a factor of ∼1.6 compared to conventional SIM, evidencing the promising applications of ADMM-DRE-SIM in superresolution biomedical imaging.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.