Prime-Cam, a first-generation science instrument for the Atacama-based Fred Young Submillimeter Telescope, is being built by the CCAT Collaboration to observe at millimeter and submillimeter wavelengths using kinetic inductance detectors (KIDs). Prime-Cam’s 280 GHz instrument module will deploy with two aluminum-based KID arrays and one titanium nitride-based KID array, totaling ∼10,000 detectors at the focal plane, all of which have been fabricated and are currently undergoing testing. One complication of fielding large arrays of KIDs under dynamic loading conditions is tuning the detector tone powers to maximize signal-to-noise while avoiding bifurcation due to the nonlinear kinetic inductance. For aluminum-based KIDs, this is further complicated by additional nonlinear effects which couple tone power to resonator quality factors and resonant frequencies. While both nonequilibrium quasiparticle dynamics and two-level system fluctuations have been shown to give rise to qualitatively similar distortions, modeling these effects alongside nonlinear kinetic inductance is inefficient when fitting thousands of resonators on-sky with existing models. For this reason, it is necessary to have a detailed understanding of the nonlinear effects across relevant detector loading conditions, including how they impact on on-sky noise and how to diagnose the detector’s relative performance. We present a study of the competing nonlinearities seen in Prime-Cam’s 280 GHz aluminum KIDs, with a particular emphasis on the resulting distortions to the resonator line shape and how these impact detector parameter estimation.
The EXperiment for Cryogenic Large-Aperture Intensity Mapping (EXCLAIM) is a balloon-borne telescope designed to survey star formation over cosmological time scales using intensity mapping in the 420 – 540 GHz frequency range. EXCLAIM uses a fully cryogenic telescope coupled to six on-chip spectrometers featuring kinetic inductance detectors (KIDs) to achieve high sensitivity, allowing for fast integration in dark atmospheric windows. The telescope receiver is cooled to ≈ 1.7 K by immersion in a superfluid helium bath and enclosed in a superfluid-tight shell with a meta-material anti-reflection coated silicon window. In addition to the optics and the spectrometer package, the receiver contains the magnetic shielding, the cryogenic segment of the spectrometer readout, and the sub-Kelvin cooling system. A three-stage continuous adiabatic demagnetization refrigerator (CADR) keeps the detectors at 100 mK while a 4He sorption cooler provides a 900 mK thermal intercept for mechanical suspensions and coaxial cables. We present the design of the EXCLAIM receiver and report on the flight-like testing of major receiver components, including the superfluid-tight receiver window and the sub-Kelvin coolers.
Prime-Cam is a first-generation instrument designed for the Fred Young Submillimeter Telescope (FYST) in the Cerro Chajnantor Atacama Telescope (CCAT) Facility. Among the instrument modules being developed for the Prime-Cam receiver, the highest frequency 850 GHz module presents unique challenges in optical design, coupling, detection, and readout. The 850 GHz module will incorporate approximately 45,000 polarization-sensitive, lumped-element microwave kinetic inductance detectors (KIDs), which will represent the most KIDs on sky in a single instrument to date. We present the critical aspects of the detector design and discuss solutions to the challenges of efficient optical coupling and a multioctave readout band. Specifically, the designs will include a feature which reduces the inductance across a portion of the detectors by shorting pairs of inductor lines to allow the KIDs to be tuned across four distinct bands across the readout range, all with minimal impact to the responsivity of the detector. Thus, the resonators will be coarsely tuned via the inductance shorts, and finely tuned by etching away small portions of the interdigital capacitors. We further present a comparison between simulations and preliminary results of thermal responsivity. The results of this work will directly inform the design of microwave KIDs for the multi-octave readout architecture as part of the development of densely packed arrays for the Prime-Cam instrument.
KEYWORDS: Sensors, Resonators, Detector arrays, Data acquisition, Signal attenuation, Equipment, Quantum reading, Calibration, Signal processing, Signal detection
We outline the development of the readout software for the Prime-Cam and Mod-Cam instruments on the CCAT Fred Young Submillimeter Telescope (FYST), primecam readout. The instruments feature Lumped-element Kinetic Inductance Detector (LEKID) arrays driven by Xilinx ZCU111 RFSoC boards. In the current configuration, each board can drive up to 4000 KIDs, and Prime-Cam is implementing approximately 25 boards. The software runs on a centralized control computer connected to the boards via dedicated ethernet and facilitates such tasks as frequency-multiplexed tone comb driving, comb calibration and optimization, and detector timestream establishment. The control computer utilizes dynamically generated control channels for each board, allowing for simultaneous parallel control overall, while uniquely tracking diagnostics for each. This work demonstrates a scalable RFSoC readout architecture where computational demands increase linearly with the number of detectors, enabling control of tens-of-thousands of KIDs with modest hardware, and opening the door to the next generation of KID arrays housing millions of detectors.
The EXperiment for Cryogenic Large-Aperture Intensity Mapping (EXCLAIM) will constrain star formation over cosmic time by carrying out a blind and complete census of redshifted carbon monoxide (CO) and ionized carbon ([CII]) emission in cross-correlation with galaxy survey data in redshift windows from the present to z=3.5 with a fully cryogenic, balloon-borne telescope. EXCLAIM will carry out extragalactic and Galactic surveys in a conventional balloon flight planned for 2023. EXCLAIM will be the first instrument to deploy µ-Spec silicon integrated spectrometers with a spectral resolving power R=512 covering 420-540 GHz. We summarize the design, science goals, and status of EXCLAIM.
Prime-Cam is a first-generation instrument for the Cerro Chajnantor Atacama Telescope-prime (CCAT-prime) Facility. The 850 GHz module for Prime-Cam will probe the highest frequency of all the instrument modules. We describe the parameter space of the 850 GHz optical system between the Fλ spacing, beam size, pixel sensitivity, and detector count. We present the optimization of an optical design for the 850 GHz instrument module for CCAT-prime. We further describe the development of the cryogenic RF chain design to accommodate 30 readout lines to read 41,400 kinetic inductance detectors (KIDs) within the cryogenic testbed.
The Fred Young Submillimeter Telescope (FYST) at the Cerro-Chajnantor Atacama Telescope prime (CCATprime) Facility will host Prime-Cam as a powerful, first generation camera with imaging polarimeters working at several wavelengths and spectroscopic instruments aimed at intensity mapping during the Epoch of Reionization. Here we introduce the 850 GHz (350 micron) instrument module. This will be the highest frequency module in Prime-Cam and the most novel for astronomical and cosmological surveys, taking full advantage of the atmospheric transparency at the high 5600 meter CCAT-prime siting on Cerro Chajnantor. The 850 GHz module will deploy ∼40,000 Kinetic Inductance Detectors (KIDs) with Silicon platelet feedhorn coupling (both fabricated at NIST), and will provide unprecedented broadband intensity and polarization measurement capabilities. The 850 GHz module will be key to addressing pressing astrophysical questions regarding galaxy formation, Big Bang cosmology, and star formation within our own Galaxy. We present the motivation and overall design for the module, and initial laboratory characterization.
The TolTEC camera is a next generation three-band imaging polarimeter for the Large Millimeter Telescope. With 7514 lumped element kinetic inductance detectors across three simultaneously observing passbands at 1.1 mm, 1.4 mm, and 2.0 mm, TolTEC has diffraction-limited beams with FWHM of 5, 7, and 11 arcsec, respectively. Herein, we cover a brief overview of the instrument along with the first quantitative measures of TolTEC’s performance at the LMT. We also provide initial reductions of commissioning targets - demonstrating TolTEC's ability to detect both faint and extended structures over a wide dynamic range of flux and angular scales.
The experiment for cryogenic large-aperture intensity mapping (EXCLAIM) is a balloon-borne telescope designed to survey star formation in windows from the present to z = 3.5. During this time, the rate of star formation dropped dramatically, while dark matter continued to cluster. EXCLAIM maps the redshifted emission of singly ionized carbon lines and carbon monoxide using intensity mapping, which permits a blind and complete survey of emitting gas through statistics of cumulative brightness fluctuations. EXCLAIM achieves high sensitivity using a cryogenic telescope coupled to six integrated spectrometers employing kinetic inductance detectors covering 420 to 540 GHz with spectral resolving power R = 512 and angular resolution ≈4 arc min. The spectral resolving power and cryogenic telescope allow the survey to access dark windows in the spectrum of emission from the upper atmosphere. EXCLAIM will survey 305 deg2 in the Sloan Digital Sky Survey Stripe 82 field from a conventional balloon flight in 2023. EXCLAIM will also map several galactic fields to study carbon monoxide and neutral carbon emission as tracers of molecular gas. We summarize the design phase of the mission.
Publisher’s Note: This paper, originally published on 22 December 2020, was replaced with a corrected/revised version on 12 March 2021. If you downloaded the original PDF but are unable to access the revision, please contact SPIE Digital Library Customer Service for assistance.
AliCPT-1 is the first CMB degree scale polarimeter to be deployed to the Tibetan plateau at 5,250m asl. AliCPT-1 is a 95/150GHz 72cm aperture, two lens refracting telescope cooled down to 4K. Alumina lenses image the CMB on a 636mm wide focal plane. The modularized focal plane consists of dichroic polarization-sensitive Transition-Edge Sensors (TESes). Each module includes 1,704 optically active TESes fabricated on a 6in Silicon wafer. Each TES array is read out with a microwave multiplexing with a multiplexing factor up to 2,000. Such large factor has allowed to consider 10's of thousands of detectors in a practical way, enabling to design a receiver that can operate up to 19 TES arrays for a total of 32,300 TESes. AliCPT-1 leverages the technological advancements of AdvACT and BICEP-3. The cryostat receiver is currently under integration and testing. Here we present the AliCPT-1 receiver, underlying how the optimized design meets the experimental requirements.
The CCAT-prime project's first light array will be deployed in Mod-Cam, a single-module testbed and first light cryostat, on the Fred Young Submillimeter Telescope (FYST) in Chile's high Atacama desert in late 2022. FYST is a six-meter aperture telescope being built on Cerro Chajnantor at an elevation of 5600 meters to observe at millimeter and submillimeter wavelengths.1 Mod-Cam will pave the way for Prime-Cam, the primary first generation instrument, which will house up to seven instrument modules to simultaneously observe the sky and study a diverse set of science goals from monitoring protostars to probing distant galaxy clusters and characterizing the cosmic microwave background (CMB). At least one feedhorn-coupled array of microwave kinetic inductance detectors (MKIDs) centered on 280 GHz will be included in Mod-Cam at first light, with additional instrument modules to be deployed along with Prime-Cam in stages. The first 280 GHz detector array was fabricated by the Quantum Sensors Group at NIST in Boulder, CO and includes 3,456 polarization- sensitive MKIDs. Current mechanical designs allow for up to three hexagonal arrays to be placed in each single instrument module. We present details on this first light detector array, including mechanical designs and cold readout plans, as well as introducing Mod-Cam as both a testbed and predecessor to Prime-Cam.
This work describes the optical design of the EXperiment for Cryogenic Large-Aperture Intensity Mapping (EXCLAIM). EXCLAIM is a balloon-borne telescope that will measure integrated line emission from carbon monoxide (CO) at redshifts z<1 and ionized carbon ([CII]) at redshifts z = 2.5-3.5 to probe star formation over cosmic time in cross-correlation with galaxy redshift surveys. The EXCLAIM instrument will observe at frequencies of 420--540 GHz using six microfabricated silicon integrated spectrometers with spectral resolving power R = 512 coupled to kinetic inductance detectors (KIDs). A completely cryogenic telescope cooled to a temperature below 5 K provides low-background observations between narrow atmospheric lines in the stratosphere. Off-axis reflective optics use a 90-cm primary mirror to provide 4.2' full-width at half-maximum (FWHM) resolution at the center of the EXCLAIM band over a field of view of 22.5'.
The BLAST Observatory is a proposed super-pressure balloon-borne polarimeter designed for a future ultra- long duration balloon campaign from Wanaka, New Zealand. To maximize scientific output while staying within the stringent super-pressure weight envelope, BLAST will feature new 1.8m off-axis optical system contained within a lightweight monocoque structure gondola. The payload will incorporate a 300 L 4He cryogenic receiver which will cool 8,274 microwave kinetic inductance detectors (MKIDs) to 100mK through the use of an adiabatic demagnetization refrigerator (ADR) in combination with a 3He sorption refrigerator all backed by a liquid helium pumped pot operating at 2 K. The detector readout utilizes a new Xilinx RFSOC-based system which will run the next-generation of the BLAST-TNG KIDPy software. With this instrument we aim to answer outstanding questions about dust dynamics as well as provide community access to the polarized submillimeter sky made possible by high-altitude observing unrestricted by atmospheric transmission. The BLAST Observatory is designed for a minimum 31-day flight of which 70% will be dedicated to observations for BLAST scientific goals and the remaining 30% will be open to proposals from the wider astronomical community through a shared-risk proposals program.
The EXperiment for Cryogenic Large-Aperture Intensity Mapping (EXCLAIM) is a balloon-borne far-infrared telescope that will survey galactic formation history over cosmological time scales with redshifts between 0 and 3.5. EXCLAIM will measure the statistics of brightness fluctuations of redshifted cumulative carbon monoxide and singly ionized carbon line emissions, following an intensity mapping approach. EXCLAIM will couple all-cryogenic optical elements to six μ-Spec spectrometer modules, operating at 420-540 GHz with a spectral resolution of 512 and featuring microwave kinetic inductance detectors. Here, we present an overview of the mission and its development status.
The Next Generation Balloon-borne Large Aperture Submillimeter Telescope (BLAST-TNG) is a submillimeter polarimeter designed to map interstellar dust and galactic foregrounds at 250, 350, and 500 microns during a 24-day Antarctic flight. The BLAST-TNG detector arrays are comprised of 918, 469, and 272 MKID pixels, respectively. The pixels are formed from two orthogonally oriented, crossed, linear-polarization sensitive MKID antennae. The arrays are cooled to sub 300 mK temperatures and stabilized via a closed cycle 3He sorption fridge in combination with a 4He vacuum pot. The detectors are read out through a combination of the second-generation Reconfigurable Open Architecture Computing Hardware (ROACH2) and custom RF electronics designed for BLAST-TNG. The firmware and software designed to readout and characterize these detectors was built from scratch by the BLAST team around these detectors, and has been adapted for use by other MKID instruments such as TolTEC and OLIMPO.1 We present an overview of these systems as well as in-depth methodology of the ground-based characterization and the measured in-flight performance.
The Next Generation Balloon-Borne Large Aperture Submillimeter Telescope (BLAST-TNG) was a unique instrument for characterizing the polarized submillimeter sky at high-angular resolution. BLAST-TNG flew from the Long Duration Balloon Facility in Antarctica in January 2020. Despite the short flight duration, the instrument worked very well and is providing significant information about each subsystem that will be invaluable for future balloon missions. In this contribution, we discuss the performance of telescope and gondola.
TolTEC is a three-band imaging polarimeter for the Large Millimeter Telescope. Simultaneously observing with passbands at 1.1mm, 1.4mm and 2.0mm, TolTEC has diffraction-limited beams with FWHM of 5, 7, and 11 arcsec, respectively. Over the coming decade, TolTEC will perform a combination of PI-led and Open-access Legacy Survey projects. Herein we provide an overview of the instrument and give the first quantitative measures of its performance in the lab prior to shipping to the telescope in 2021.
Microwave kinetic inductance detectors (MKIDs) operate through means of a superconducting resonator that changes resonant frequency and quality factor when incident photons are absorbed in the superconducting material. Incident power on MKIDs is determined by reading out the phase and amplitude of a tone injected into each detector. However, if the incident power on an MKID changes too drastically and the resonant frequency moves too far from the probe tone, amplitude information becomes useless and the detector is effectively out of commission until a VNA sweep is used to relocate resonances. Here we present the designs and preliminary results of a tone-tracking firmware that uses phase information to maintain an on-resonance probe tone at all times, removing the need for time-intensive VNA sweeps during observations and effectively maximizing the dynamic range of MKIDs. We will conclude with a discussion on future NASA missions that hope implement this tone-tracking design.
KEYWORDS: Superconductors, Multiplexing, Sensors, Data communications, Telecommunications, Microwave radiation, Astronomy, System on a chip, Algorithm development, Telescopes
We describe the development of a reconfigurable frequency multiplexed readout system for superconducting arrays. This system is an upgrade to the ROACH2 based readout system we have developed for a number of balloon-borne and ground-based instruments including BLAST-TNG, OLIMPO, MUSCAT, Superspec and TolTEC. Specifically our development has targeted the RFSoC ZCU111 evaluation board of which the size, weight, power, and instantaneous bandwidth have made it an attractive candidate for future balloon-borne or space-based astronomical instruments. Applications for the new readout system focus primarily on: frequency multiplexed superconducting nanowires single-photon detectors, Kinetic inductance detectors, Transition Edge Sensors, and Quantum Capacitance detectors. We will discuss the overlapping readout requirements that drive the general firmware architecture. Preliminary measurements with the new readout system using different detector technologies will also be presented.
We describe a custom time-to-digital converter (TDC) designed to time tag individual photons from multiple single photon detectors with high count rate, continuous data logging and low systematics. The instrument utilizes a taped-delay line approach on an FPGA chip which allows for sub-clock resolution of <100 ps. We implemented our TDC on a Re-configurable Open Architecture Computing Hardware Revision 2 (ROACH2) board which allows continuous data streaming and time tagging of up to 20 million events per second. The functioning prototype is currently set up to work with up to ten independent channels. We report on the laboratory characterization of the system, including RF pick up and mitigation as well as measurement of in-lab photon correlations from an incoherent light source (artificial star). Additional improvements to the TDC will also be discussed, such as improving the data transfer rate by a factor of 10 via an SDP+ Mezzanine card and PCIE 2SFP+ 10 Gb card, as well as scaling to 64 independent channels.
The Next Generation Balloon-borne Large Aperture Submillimeter Telescope (BLAST-TNG) is a submillimeter mapping experiment planned for a 28 day long-duration balloon (LDB) flight from McMurdo Station, Antarctica during the 2018-2019 season. BLAST-TNG will detect submillimeter polarized interstellar dust emission, tracing magnetic fields in galactic molecular clouds. BLAST-TNG will be the first polarimeter with the sensitivity and resolution to probe the ~0.1 parsec-scale features that are critical to understanding the origin of structures in the interstellar medium.
BLAST-TNG features three detector arrays operating at wavelengths of 250, 350, and 500 m (1200, 857, and 600 GHz) comprised of 918, 469, and 272 dual-polarization pixels, respectively. Each pixel is made up of two crossed microwave kinetic inductance detectors (MKIDs). These arrays are cooled to 275 mK in a cryogenic receiver. Each MKID has a different resonant frequency, allowing hundreds of resonators to be read out on a single transmission line. This inherent ability to be frequency-domain multiplexed simplifies the cryogenic readout hardware, but requires careful optical testing to map out the physical location of each resonator on the focal plane. Receiver-level optical testing was carried out using both a cryogenic source mounted to a movable xy-stage with a shutter, and a beam-filling, heated blackbody source able to provide a 10-50 C temperature chop. The focal plane array noise properties, responsivity, polarization efficiency, instrumental polarization were measured. We present the preflight characterization of the BLAST-TNG cryogenic system and array-level optical testing of the MKID detector arrays in the flight receiver.
We describe the performance of detector modules containing silicon single photon avalanche photodiodes (SPADs) and superconducting nanowire single photon detectors (SNSPDs) to be used for intensity interferometry. The SPADs are mounted in fiber-coupled and free-space coupled packages. The SNSPDs are mounted in a small liquid helium cryostat coupled to single mode fiber optic cables which pass through a hermetic feed-through. The detectors are read out with microwave amplifiers and FPGA-based coincidence electronics. We present progress on measurements of intensity correlations from incoherent sources including gas-discharge lamps and stars with these detectors. From the measured laboratory performance of the correlation system, we estimate the sensitivity to intensity correlations from stars using commercial telescopes and larger existing research telescopes.
Polarized thermal emission from interstellar dust grains can be used to map magnetic fields in star forming molecular clouds and the diffuse interstellar medium (ISM). The Balloon-borne Large Aperture Submillimeter Telescope for Polarimetry (BLASTPol) flew from Antarctica in 2010 and 2012 and produced degree-scale polarization maps of several nearby molecular clouds with arcminute resolution. The success of BLASTPol has motivated a next-generation instrument, BLAST-TNG, which will use more than 3000 linear polarization- sensitive microwave kinetic inductance detectors (MKIDs) combined with a 2.5 m diameter carbon fiber primary mirror to make diffraction-limited observations at 250, 350, and 500 µm. With 16 times the mapping speed of BLASTPol, sub-arcminute resolution, and a longer flight time, BLAST-TNG will be able to examine nearby molecular clouds and the diffuse galactic dust polarization spectrum in unprecedented detail. The 250 μm detec- tor array has been integrated into the new cryogenic receiver, and is undergoing testing to establish the optical and polarization characteristics of the instrument. BLAST-TNG will demonstrate the effectiveness of kilo-pixel MKID arrays for applications in submillimeter astronomy. BLAST-TNG is scheduled to fly from Antarctica in December 2017 for 28 days and will be the first balloon-borne telescope to offer a quarter of the flight for “shared risk” observing by the community.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.