SignificanceIn the realm of cerebrovascular monitoring, primary metrics typically include blood pressure, which influences cerebral blood flow (CBF) and is contingent upon vessel radius. Measuring CBF noninvasively poses a persistent challenge, primarily attributed to the difficulty of accessing and obtaining signal from the brain.AimOur study aims to introduce a compact speckle contrast optical spectroscopy device for noninvasive CBF measurements at long source-to-detector distances, offering cost-effectiveness, and scalability while tracking blood flow (BF) with remarkable sensitivity and temporal resolution.ApproachThe wearable sensor module consists solely of a laser diode and a board camera. It can be easily placed on a subject’s head to measure BF at a sampling rate of 80 Hz.ResultsCompared to the single-fiber-based version, the proposed device achieved a signal gain of about 70 times, showed superior stability, reproducibility, and signal-to-noise ratio for measuring BF at long source-to-detector distances. The device can be distributed in multiple configurations around the head.ConclusionsGiven its cost-effectiveness, scalability, and simplicity, this laser-centric tool offers significant potential in advancing noninvasive cerebral monitoring technologies.
This work presents hybrid photoacoustic and ultrasound tomography, which enables three-dimensional panoramic imaging of the human body’s morphological and angiographic information to provide dual-contrast images of representative parts of human body (i.e., head, breast, and hand) with a single system. Through in vivo human application, we present our hybrid tomography system as a powerful tool for high-speed, three-dimensional, dual-contrast imaging of the human body with potential for rapid clinical translation.
Photoacoustic computed tomography (PACT) has been extensively explored in animal brains but never in the human brain due to its limited field of view (FOV), imaging speed, penetration depth, and sensitivity. Here, we present the first application of PACT in functional human brain imaging. Motor and language functional tasks were employed and performed by post-hemicraniectomy patients. The brain activities were recorded at a 10-cm–diameter FOV, 350-μm/2-s spatiotemporal resolution, and ~2-cm penetration depth using a newly developed massively parallel three-dimensional PACT system. Quantitative validation of the PACT results against 7 Tesla MRI revealed comparable angiographic structures and functional activation in the same FOV. The obtained results represent a critical step toward broader-scope human brain imaging applications using PACT technology.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.