Earlier on we introduced model of piece-wise regular fiber optic link, operating in a few-mode regime: laser-based data transmission over large core optical fiber. Presented model is based on piecewise regular representation with general approach of split-step method application. It allows to take into account laser-excited optical signal launching conditions, differential mode delay, differential mode attenuation, higher-order mode chromatic dispersion and mode mixing / power diffusion, occurring due to optical fiber irregularity and fiber optic cable bends / twisting / stress / tension. While optical fiber irregularity can be directly set by protocols of optical fiber outer diameter monitoring system of drawing tower, cable external mechanical influences are simulated via equivalent angular misalignment at the splices of regular spans. Therefore, this work is concerned with issues of selection of this equivalent angular misalignment (EAM). We performed a computational test series under various values of mentioned above EAM under following comparison with experimentally measurements of few-mode optical pulse responses at the output of multimode optical fibers with strong differential mode delay effect.
This work presents method for prediction of laser-excited optical pulse additional distortions, occurring due to contamination of fiber optic connector end-face, under its propagation over short range multi-Gigabit network link with crypto-fibers – couple of special multimode optical fibers “encryptor-decoder”, operating in a few-mode regime. Results of optical pulse response envelop computations, propagating over 1 km link with 500 m crypto-fibers “encryptor” and “decoder” lengths, are compared under various conditions of 10GBase-LX transceiver laser-source fiber optic connector ferrule end-face contamination. Strong pulse splitting additional distortions due to strong ferrule contamination were noticed.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.