Recently, fluorescent point defects in silicon have been explored as promising candidates for single photon sources, which may pave the way towards the integration of quantum photonic devices with existing silicon-based electronic platforms. However, the current processes for creating such defects are complex, and commonly require one or two implantation steps. In this work, we have demonstrated implantation-free methods for obtaining G and W-centers in commercial silicon-on-insulator substrates using femtosecond laser annealing. We also demonstrate an enhancement of the color centers’ optical properties by coupling them with photonic structures. For example, we have shown an improvement in emission directivity for G centers by embedding them into silicon Mie resonators fabricated by dewetting, achieving an extraction efficiency exceeding 60% with standard numerical apertures. We will also address the control of emission polarization by embedding color centers in photonic crystals.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.