XL-Calibur is a balloon-borne mission for hard x-ray polarimetry. The first launch is currently scheduled from Sweden in summer 2022. Japanese collaborators provide a hard x-ray telescope to the mission. The telescope’s design is identical to the Hard X-ray Telescope (HXT, conically-approximated Wolter-I optics) on board ASTROH with the same focal length of 12 m and the aperture of 45 cm, which can focus x-rays up to 80 keV. The telescope is divided into three segments in the circumferential direction, and confocal 213 grazing-incidence mirrors are precisely placed in the primary and secondary sections of each segment. The surfaces of the mirrors are coated with Pt/C depth-graded multilayer to reflect hard x-rays efficiently by the Bragg reflection. To achieve the best focus, optical adjustment of all of the segments was performed at the SPring-8/BL20B2 synchrotron radiation facility during 2020. A final performance evaluation was conducted in June 2021 and the experiment yields the effective area of 175 cm2 and 73 cm2 at 30 keV and 50 keV, respectively, with its half-power diameter of the point spread function as 2.1 arcmin. The field of view, defined as the full width of the half-maximum of the vignetting curve, is 5.9 arcmin.
This paper introduces a second-generation balloon-borne hard X-ray polarimetry mission, XL-Calibur. X-ray polarimetry promises to give qualitatively new information about high-energy astrophysical sources, such as pulsars and binary black hole systems. The XL-Calibur contains a grazing incidence X-ray telescope with a focal plane detector unit that is sensitive to linear polarization. The telescope is very similar in design to the ASTRO-H HXT telescopes that has the world’s largest effective area above ~10 keV. The detector unit combines a low atomic number Compton scatterer with a CdZnTe detector assembly to measure the polarization making use of the fact that polarized photons Compton scatter preferentially perpendicular to the electric field orientation. It also contains a CdZnTe imager at the bottom. The detector assembly is surrounded by the improved anti-coincidence shielding, giving a better sensitivity. The pointing system with arcsecond accuracy will be achieved.
We present the first application of a time projection chamber polarimeter to measure high energy X-ray polarization above 10 keV. The polarimeter is designed based on the PRAXyS soft X-ray polarimeter. The sealed gas is changed to a gas mixture of 60% argon and 40% dimethyl ether at 1 atm to be sensitive to high energy X-rays. The polarimeter performance is verified with linearly polarized, monochromatic X-rays at a synchrotron radiation facility, KEK Photon Factory BL-14A. The measured modulation factors are 42.4 ± 0.6%, 50.4 ± 0.6%, and 55.0 ± 0.6% at 12, 14, and 16 keV, respectively, and the measured polarization angles are consistent with the expected values at all energies.
All-sky surveys are crucial to discover transient objects. In reality, however, it is impossible to achieve high sensitivity, high cadence, wide sky coverage, and broad wavelength range at the same time. This is where observations with small telescopes can come in significant, as small telescopes often can make high cadence monitoring and flexible operations, playing a complementary role to large observatories. We plan to launch a new 6U-size CubeSat X-ray observatory, NinjaSat, in 2022 to conduct a flexible X-ray observation program. The satellite is equipped with two identical non-imaging Gas Multiplier Counters (GMCs) sensitive to X-rays in the 2–50 keV band with a total effective area of 36 cm2 at 6 keV. Coupled with X-ray collimators of a 2.1° field-of-view, NinjaSat is suitable for flexible multi-wavelength coordinated observations of bright (⪆10 mCrab) X-ray sources with particular emphasis on their time variability. An example of our targets is one of the brightest celestial X-ray objects, Scorpius X-1, which hosts a fast-spinning neutron star and is a candidate source for coherent gravitational waves. The quasi-periodic oscillation (QPO) of neutron-star systems is considered to carry important information on the neutron star’s rotational frequency, which is useful for sensitive gravitational-wave searches. Scorpius X-1, being one of the brightest, provides the best opportunity to study the QPO. Combining with coordinated simultaneous monitoring observations with recently-developed fast optical photometry, the mechanism of the mass accretion of the disk can also be studied. We plan to use NinjaSat also for space science education, particularly X-ray astronomy, for students and the general public.
The source position determination method of the multiplexing lobster-eye optics (MuLE), which is a newly proposed configuration of the Lobster-Eye (LE) optics to reduce the number of focal plane detectors significantly, was developed. In the MuLE configuration, X-rays came from different field-of-views (FoVs) were focused on a single imager. To separate the multiplexed FoVs, the optics was designed so that cross-like responses of LE mirror in different FoVs had different azimuthal rotation angles. In this paper, we show the method to determine the rotation angles and verify the FoV discrimination power by using a ray tracing simulation. The configuration we assumed in the simulation was nine multiplexed FoVs projecting onto a single imager (nine-segment MuLE optics) with a 30 cm focal length and a 9×9 cm2 effective area of each LE segment. One LE segment covers 9.6°× 9.6° FoV and the total FoV of the nine-segment MuLE configuration was 9 times of that. Our method provided 100% correct FoV discrimination at the 5σ detection limit flux (35–70 mCrab) for a transient source with a duration of 100 s except for the edge of the FoV.
We propose a concept of multiplexing lobster-eye (MuLE) optics to achieve significant reductions in the number of focal plane imagers in lobster-eye (LE) wide-field x-ray monitors. In the MuLE configuration, an LE mirror is divided into several segments and the x-rays reflected on each of these segments are focused on a single image sensor in a multiplexed configuration. If each LE segment assumes a different rotation angle, the azimuthal rotation angle of a cross-like image reconstructed from a point source by the LE optics identifies the specific segment that focuses the x-rays on the imager. With a focal length of 30 cm and LE segments with areas of 10 × 10 cm2, ∼1 sr of the sky can be covered with 36 LE segments and only four imagers (with total areas of 10 × 10 cm2). A ray tracing simulation was performed to evaluate the nine-segment MuLE configuration. The simulation showed that the flux (0.5 to 2 keV) associated with the 5σ detection limit was ∼2 × 10 − 10 erg cm − 2 s − 1 (10 mCrab) for a transient with a duration of 100 s. The simulation also showed that the direction of the transient for flux in the range of 14 to 17 mCrab at 0.6 keV was determined correctly with a 99.7% confidence limit. We conclude that the MuLE configuration can become an effective on-board device for small satellites for future x-ray wide-field transient monitoring.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.